| #!/usr/bin/python3 |
| |
| from aos.util.trapezoid_profile import TrapezoidProfile |
| from frc971.control_loops.python import control_loop |
| from frc971.control_loops.python import controls |
| from y2017.control_loops.python import turret |
| from y2017.control_loops.python import indexer |
| import numpy |
| import sys |
| from matplotlib import pylab |
| import gflags |
| import glog |
| |
| FLAGS = gflags.FLAGS |
| |
| try: |
| gflags.DEFINE_bool('plot', False, 'If true, plot the loop response.') |
| except gflags.DuplicateFlagError: |
| pass |
| |
| |
| class ColumnController(control_loop.ControlLoop): |
| |
| def __init__(self, name='Column'): |
| super(ColumnController, self).__init__(name) |
| self.turret = turret.Turret(name + 'Turret') |
| self.indexer = indexer.Indexer(name + 'Indexer') |
| |
| # Control loop time step |
| self.dt = 0.005 |
| |
| # State is [position_indexer, |
| # velocity_indexer, |
| # position_shooter, |
| # velocity_shooter] |
| # Input is [volts_indexer, volts_shooter] |
| self.A_continuous = numpy.matrix(numpy.zeros((3, 3))) |
| self.B_continuous = numpy.matrix(numpy.zeros((3, 2))) |
| |
| self.A_continuous[0, 0] = -(self.indexer.Kt / self.indexer.Kv / |
| (self.indexer.J * self.indexer.resistance * |
| self.indexer.G * self.indexer.G) + |
| self.turret.Kt / self.turret.Kv / |
| (self.indexer.J * self.turret.resistance * |
| self.turret.G * self.turret.G)) |
| self.A_continuous[0, 2] = self.turret.Kt / self.turret.Kv / ( |
| self.indexer.J * self.turret.resistance * self.turret.G * |
| self.turret.G) |
| self.B_continuous[0, 0] = self.indexer.Kt / ( |
| self.indexer.J * self.indexer.resistance * self.indexer.G) |
| self.B_continuous[0, 1] = -self.turret.Kt / ( |
| self.indexer.J * self.turret.resistance * self.turret.G) |
| |
| self.A_continuous[1, 2] = 1 |
| |
| self.A_continuous[2, 0] = self.turret.Kt / self.turret.Kv / ( |
| self.turret.J * self.turret.resistance * self.turret.G * |
| self.turret.G) |
| self.A_continuous[2, 2] = -self.turret.Kt / self.turret.Kv / ( |
| self.turret.J * self.turret.resistance * self.turret.G * |
| self.turret.G) |
| |
| self.B_continuous[2, 1] = self.turret.Kt / ( |
| self.turret.J * self.turret.resistance * self.turret.G) |
| |
| self.C = numpy.matrix([[1, 0, 0], [0, 1, 0]]) |
| self.D = numpy.matrix([[0, 0], [0, 0]]) |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| q_indexer_vel = 13.0 |
| q_pos = 0.05 |
| q_vel = 0.8 |
| self.Q = numpy.matrix([[(1.0 / (q_indexer_vel**2.0)), 0.0, 0.0], |
| [0.0, (1.0 / (q_pos**2.0)), 0.0], |
| [0.0, 0.0, (1.0 / (q_vel**2.0))]]) |
| |
| self.R = numpy.matrix([[(1.0 / (12.0**2.0)), 0.0], |
| [0.0, (1.0 / (12.0**2.0))]]) |
| self.K = controls.dlqr(self.A, self.B, self.Q, self.R) |
| |
| glog.debug('Controller poles are ' + |
| repr(numpy.linalg.eig(self.A - self.B * self.K)[0])) |
| |
| q_vel_indexer_ff = 0.000005 |
| q_pos_ff = 0.0000005 |
| q_vel_ff = 0.00008 |
| self.Qff = numpy.matrix([[(1.0 / (q_vel_indexer_ff**2.0)), 0.0, 0.0], |
| [0.0, (1.0 / (q_pos_ff**2.0)), 0.0], |
| [0.0, 0.0, (1.0 / (q_vel_ff**2.0))]]) |
| |
| self.Kff = controls.TwoStateFeedForwards(self.B, self.Qff) |
| |
| self.U_max = numpy.matrix([[12.0], [12.0]]) |
| self.U_min = numpy.matrix([[-12.0], [-12.0]]) |
| |
| self.InitializeState() |
| |
| |
| class Column(ColumnController): |
| |
| def __init__(self, name='Column', disable_indexer=False): |
| super(Column, self).__init__(name) |
| A_continuous = numpy.matrix(numpy.zeros((4, 4))) |
| B_continuous = numpy.matrix(numpy.zeros((4, 2))) |
| |
| A_continuous[0, 1] = 1 |
| A_continuous[1:, 1:] = self.A_continuous |
| B_continuous[1:, :] = self.B_continuous |
| |
| self.A_continuous = A_continuous |
| self.B_continuous = B_continuous |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| self.C = numpy.matrix([[1, 0, 0, 0], [-1, 0, 1, 0]]) |
| self.D = numpy.matrix([[0, 0], [0, 0]]) |
| |
| orig_K = self.K |
| self.K = numpy.matrix(numpy.zeros((2, 4))) |
| self.K[:, 1:] = orig_K |
| |
| glog.debug('K is ' + repr(self.K)) |
| # TODO(austin): Do we want to damp velocity out or not when disabled? |
| #if disable_indexer: |
| # self.K[0, 1] = 0.0 |
| # self.K[1, 1] = 0.0 |
| |
| orig_Kff = self.Kff |
| self.Kff = numpy.matrix(numpy.zeros((2, 4))) |
| self.Kff[:, 1:] = orig_Kff |
| |
| q_pos = 0.12 |
| q_vel = 2.00 |
| self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0], |
| [0.0, (q_vel**2.0), 0.0, 0.0], |
| [0.0, 0.0, (q_pos**2.0), 0.0], |
| [0.0, 0.0, 0.0, (q_vel**2.0)]]) |
| |
| r_pos = 0.05 |
| self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman(A=self.A, |
| B=self.B, |
| C=self.C, |
| Q=self.Q, |
| R=self.R) |
| self.L = self.A * self.KalmanGain |
| |
| self.InitializeState() |
| |
| |
| class IntegralColumn(Column): |
| |
| def __init__(self, |
| name='IntegralColumn', |
| voltage_error_noise=None, |
| disable_indexer=False): |
| super(IntegralColumn, self).__init__(name) |
| |
| A_continuous = numpy.matrix(numpy.zeros((6, 6))) |
| A_continuous[0:4, 0:4] = self.A_continuous |
| A_continuous[0:4:, 4:6] = self.B_continuous |
| |
| B_continuous = numpy.matrix(numpy.zeros((6, 2))) |
| B_continuous[0:4, :] = self.B_continuous |
| |
| self.A_continuous = A_continuous |
| self.B_continuous = B_continuous |
| |
| self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, |
| self.B_continuous, self.dt) |
| |
| C = numpy.matrix(numpy.zeros((2, 6))) |
| C[0:2, 0:4] = self.C |
| self.C = C |
| |
| self.D = numpy.matrix([[0, 0], [0, 0]]) |
| |
| orig_K = self.K |
| self.K = numpy.matrix(numpy.zeros((2, 6))) |
| self.K[:, 0:4] = orig_K |
| |
| # TODO(austin): I'm not certain this is ideal. If someone spins the bottom |
| # at a constant rate, we'll learn a voltage offset. That should translate |
| # directly to a voltage on the turret to hold it steady. I'm also not |
| # convinced we care that much. If the indexer is off, it'll stop rather |
| # quickly anyways, so this is mostly a moot point. |
| if not disable_indexer: |
| self.K[0, 4] = 1 |
| self.K[1, 5] = 1 |
| |
| orig_Kff = self.Kff |
| self.Kff = numpy.matrix(numpy.zeros((2, 6))) |
| self.Kff[:, 0:4] = orig_Kff |
| |
| q_pos = 0.40 |
| q_vel = 2.00 |
| q_voltage = 8.0 |
| if voltage_error_noise is not None: |
| q_voltage = voltage_error_noise |
| |
| self.Q = numpy.matrix([[(q_pos**2.0), 0.0, 0.0, 0.0, 0.0, 0.0], |
| [0.0, (q_vel**2.0), 0.0, 0.0, 0.0, 0.0], |
| [0.0, 0.0, (q_pos**2.0), 0.0, 0.0, 0.0], |
| [0.0, 0.0, 0.0, (q_vel**2.0), 0.0, 0.0], |
| [0.0, 0.0, 0.0, 0.0, (q_voltage**2.0), 0.0], |
| [0.0, 0.0, 0.0, 0.0, 0.0, (q_voltage**2.0)]]) |
| |
| r_pos = 0.05 |
| self.R = numpy.matrix([[(r_pos**2.0), 0.0], [0.0, (r_pos**2.0)]]) |
| |
| self.KalmanGain, self.Q_steady = controls.kalman(A=self.A, |
| B=self.B, |
| C=self.C, |
| Q=self.Q, |
| R=self.R) |
| self.L = self.A * self.KalmanGain |
| |
| self.InitializeState() |
| |
| |
| class ScenarioPlotter(object): |
| |
| def __init__(self): |
| # Various lists for graphing things. |
| self.t = [] |
| self.xi = [] |
| self.xt = [] |
| self.vi = [] |
| self.vt = [] |
| self.ai = [] |
| self.at = [] |
| self.x_hat = [] |
| self.ui = [] |
| self.ut = [] |
| self.ui_fb = [] |
| self.ut_fb = [] |
| self.offseti = [] |
| self.offsett = [] |
| self.turret_error = [] |
| |
| def run_test(self, |
| column, |
| end_goal, |
| controller_column, |
| observer_column=None, |
| iterations=200): |
| """Runs the column plant with an initial condition and goal. |
| |
| Args: |
| column: column object to use. |
| end_goal: end_goal state. |
| controller_column: Intake object to get K from, or None if we should |
| use column. |
| observer_column: Intake object to use for the observer, or None if we should |
| use the actual state. |
| iterations: Number of timesteps to run the model for. |
| """ |
| |
| if controller_column is None: |
| controller_column = column |
| |
| vbat = 12.0 |
| |
| if self.t: |
| initial_t = self.t[-1] + column.dt |
| else: |
| initial_t = 0 |
| |
| goal = numpy.concatenate((column.X, numpy.matrix(numpy.zeros((2, 1)))), |
| axis=0) |
| |
| profile = TrapezoidProfile(column.dt) |
| profile.set_maximum_acceleration(10.0) |
| profile.set_maximum_velocity(3.0) |
| profile.SetGoal(goal[2, 0]) |
| |
| U_last = numpy.matrix(numpy.zeros((2, 1))) |
| for i in range(iterations): |
| observer_column.Y = column.Y |
| observer_column.CorrectObserver(U_last) |
| |
| self.offseti.append(observer_column.X_hat[4, 0]) |
| self.offsett.append(observer_column.X_hat[5, 0]) |
| self.x_hat.append(observer_column.X_hat[0, 0]) |
| |
| next_goal = numpy.concatenate( |
| (end_goal[0:2, :], |
| profile.Update(end_goal[2, 0], |
| end_goal[3, 0]), end_goal[4:6, :]), |
| axis=0) |
| |
| ff_U = controller_column.Kff * (next_goal - |
| observer_column.A * goal) |
| fb_U = controller_column.K * (goal - observer_column.X_hat) |
| self.turret_error.append((goal[2, 0] - column.X[2, 0]) * 100.0) |
| self.ui_fb.append(fb_U[0, 0]) |
| self.ut_fb.append(fb_U[1, 0]) |
| |
| U_uncapped = ff_U + fb_U |
| |
| U = U_uncapped.copy() |
| U[0, 0] = numpy.clip(U[0, 0], -vbat, vbat) |
| U[1, 0] = numpy.clip(U[1, 0], -vbat, vbat) |
| self.xi.append(column.X[0, 0]) |
| self.xt.append(column.X[2, 0]) |
| |
| if self.vi: |
| last_vi = self.vi[-1] |
| else: |
| last_vi = 0 |
| if self.vt: |
| last_vt = self.vt[-1] |
| else: |
| last_vt = 0 |
| |
| self.vi.append(column.X[1, 0]) |
| self.vt.append(column.X[3, 0]) |
| self.ai.append((self.vi[-1] - last_vi) / column.dt) |
| self.at.append((self.vt[-1] - last_vt) / column.dt) |
| |
| offset = 0.0 |
| if i > 100: |
| offset = 1.0 |
| column.Update(U + numpy.matrix([[0.0], [offset]])) |
| |
| observer_column.PredictObserver(U) |
| |
| self.t.append(initial_t + i * column.dt) |
| self.ui.append(U[0, 0]) |
| self.ut.append(U[1, 0]) |
| |
| ff_U -= U_uncapped - U |
| goal = controller_column.A * goal + controller_column.B * ff_U |
| |
| if U[1, 0] != U_uncapped[1, 0]: |
| profile.MoveCurrentState( |
| numpy.matrix([[goal[2, 0]], [goal[3, 0]]])) |
| |
| glog.debug('Time: %f', self.t[-1]) |
| glog.debug('goal_error %s', repr((end_goal - goal).T)) |
| glog.debug('error %s', repr((observer_column.X_hat - end_goal).T)) |
| |
| def Plot(self): |
| pylab.subplot(3, 1, 1) |
| pylab.plot(self.t, self.xi, label='x_indexer') |
| pylab.plot(self.t, self.xt, label='x_turret') |
| pylab.plot(self.t, self.x_hat, label='x_hat') |
| pylab.plot(self.t, self.turret_error, label='turret_error * 100') |
| pylab.legend() |
| |
| pylab.subplot(3, 1, 2) |
| pylab.plot(self.t, self.ui, label='u_indexer') |
| pylab.plot(self.t, self.ui_fb, label='u_indexer_fb') |
| pylab.plot(self.t, self.ut, label='u_turret') |
| pylab.plot(self.t, self.ut_fb, label='u_turret_fb') |
| pylab.plot(self.t, self.offseti, label='voltage_offset_indexer') |
| pylab.plot(self.t, self.offsett, label='voltage_offset_turret') |
| pylab.legend() |
| |
| pylab.subplot(3, 1, 3) |
| pylab.plot(self.t, self.ai, label='a_indexer') |
| pylab.plot(self.t, self.at, label='a_turret') |
| pylab.plot(self.t, self.vi, label='v_indexer') |
| pylab.plot(self.t, self.vt, label='v_turret') |
| pylab.legend() |
| |
| pylab.show() |
| |
| |
| def main(argv): |
| scenario_plotter = ScenarioPlotter() |
| |
| column = Column() |
| column_controller = IntegralColumn() |
| observer_column = IntegralColumn() |
| |
| initial_X = numpy.matrix([[0.0], [0.0], [0.0], [0.0]]) |
| R = numpy.matrix([[0.0], [10.0], [5.0], [0.0], [0.0], [0.0]]) |
| scenario_plotter.run_test(column, |
| end_goal=R, |
| controller_column=column_controller, |
| observer_column=observer_column, |
| iterations=400) |
| |
| if FLAGS.plot: |
| scenario_plotter.Plot() |
| |
| if len(argv) != 7: |
| glog.fatal('Expected .h file name and .cc file names') |
| else: |
| namespaces = ['y2017', 'control_loops', 'superstructure', 'column'] |
| column = Column('Column') |
| loop_writer = control_loop.ControlLoopWriter('Column', [column], |
| namespaces=namespaces) |
| loop_writer.AddConstant( |
| control_loop.Constant('kIndexerFreeSpeed', '%f', |
| column.indexer.free_speed)) |
| loop_writer.AddConstant( |
| control_loop.Constant('kIndexerOutputRatio', '%f', |
| column.indexer.G)) |
| loop_writer.AddConstant( |
| control_loop.Constant('kTurretFreeSpeed', '%f', |
| column.turret.free_speed)) |
| loop_writer.AddConstant( |
| control_loop.Constant('kTurretOutputRatio', '%f', column.turret.G)) |
| loop_writer.Write(argv[1], argv[2]) |
| |
| # IntegralColumn controller 1 will disable the indexer. |
| integral_column = IntegralColumn('IntegralColumn') |
| disabled_integral_column = IntegralColumn('DisabledIntegralColumn', |
| disable_indexer=True) |
| integral_loop_writer = control_loop.ControlLoopWriter( |
| 'IntegralColumn', [integral_column, disabled_integral_column], |
| namespaces=namespaces) |
| integral_loop_writer.Write(argv[3], argv[4]) |
| |
| stuck_integral_column = IntegralColumn('StuckIntegralColumn', |
| voltage_error_noise=8.0) |
| stuck_integral_loop_writer = control_loop.ControlLoopWriter( |
| 'StuckIntegralColumn', [stuck_integral_column], |
| namespaces=namespaces) |
| stuck_integral_loop_writer.Write(argv[5], argv[6]) |
| |
| |
| if __name__ == '__main__': |
| argv = FLAGS(sys.argv) |
| glog.init() |
| sys.exit(main(argv)) |