Added more paths to graph edit
Changed variable names to be more descriptive, added paths, converted to
metric.
Change-Id: Ic8474b567d1794082fe275a5e1a86e14688acb53
diff --git a/y2018/control_loops/python/graph_edit.py b/y2018/control_loops/python/graph_edit.py
index 3386579..183f7bf 100644
--- a/y2018/control_loops/python/graph_edit.py
+++ b/y2018/control_loops/python/graph_edit.py
@@ -1,5 +1,7 @@
+from __future__ import print_function
import os
import basic_window
+import random
import gi
import numpy
gi.require_version('Gtk', '3.0')
@@ -15,83 +17,92 @@
import shapely
from shapely.geometry import Polygon
+
def px(cr):
- return OverrideMatrix(cr, identity)
+ return OverrideMatrix(cr, identity)
-# Draws a cross with fixed dimensions in pixel space.
+
def draw_px_cross(cr, length_px):
- with px(cr):
- x,y = cr.get_current_point()
- cr.move_to(x, y - length_px)
- cr.line_to(x, y + length_px)
- cr.stroke()
+ """Draws a cross with fixed dimensions in pixel space."""
+ with px(cr):
+ x, y = cr.get_current_point()
+ cr.move_to(x, y - length_px)
+ cr.line_to(x, y + length_px)
+ cr.stroke()
- cr.move_to(x - length_px, y)
- cr.line_to(x + length_px, y)
- cr.stroke()
+ cr.move_to(x - length_px, y)
+ cr.line_to(x + length_px, y)
+ cr.stroke()
-# Distance between two points in angle space.
+
def angle_dist_sqr(a1, a2):
- return (a1[0] - a2[0]) ** 2 + (a1[1] - a2[1]) ** 2
+ """Distance between two points in angle space."""
+ return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
+
# Find the highest y position that intersects the vertical line defined by x.
def inter_y(x):
- return numpy.sqrt((l2 + l1) ** 2 - (x - joint_center[0]) ** 2) + joint_center[1]
+ return numpy.sqrt((l2 + l1)**2 -
+ (x - joint_center[0])**2) + joint_center[1]
+
# This is the x position where the inner (hyperextension) circle intersects the horizontal line
-derr = numpy.sqrt((l1 - l2) ** 2 - (joint_center[1] - 12.0) ** 2)
+derr = numpy.sqrt((l1 - l2)**2 - (joint_center[1] - 0.3048)**2)
+
# Define min and max l1 angles based on vertical constraints.
def get_angle(boundary):
- h = numpy.sqrt((l1) ** 2 - (boundary - joint_center[0]) ** 2) + joint_center[1]
- return numpy.arctan2(h, boundary - joint_center[0])
+ h = numpy.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
+ return numpy.arctan2(h, boundary - joint_center[0])
+
# left hand side lines
lines1 = [
- (-32.525, inter_y(-32.525)),
- (-32.525, 5.5),
- (-23.025, 5.5),
- (-23.025, 12.0),
- (joint_center[0] - derr, 12.0),
+ (-0.826135, inter_y(-0.826135)),
+ (-0.826135, 0.1397),
+ (-23.025 * 0.0254, 0.1397),
+ (-23.025 * 0.0254, 0.3048),
+ (joint_center[0] - derr, 0.3048),
]
# right hand side lines
-lines2 = [
- (joint_center[0] + derr, 12.0),
- (16.625, 12.0),
- (16.625, 5.5),
- (32.525, 5.5),
- (32.525, inter_y(32.525))
-]
+lines2 = [(joint_center[0] + derr, 0.3048), (0.422275, 0.3048),
+ (0.422275, 0.1397), (0.826135, 0.1397), (0.826135,
+ inter_y(0.826135))]
-t1_min = get_angle(32.525 - 4.0)
-t2_min = -7 / 4.0 * numpy.pi
+t1_min = get_angle((32.525 - 4.0) * 0.0254)
+t2_min = -7.0 / 4.0 * numpy.pi
-t1_max = get_angle(-32.525 + 4.0)
-t2_max = numpy.pi * 3 / 4.0
+t1_max = get_angle((-32.525 + 4.0) * 0.0254)
+t2_max = numpy.pi * 3.0 / 4.0
+
# Draw lines to cr + stroke.
def draw_lines(cr, lines):
- cr.move_to(lines[0][0], lines[0][1])
- for pt in lines[1:]:
- cr.line_to(pt[0], pt[1])
- with px(cr): cr.stroke()
+ cr.move_to(lines[0][0], lines[0][1])
+ for pt in lines[1:]:
+ cr.line_to(pt[0], pt[1])
+ with px(cr):
+ cr.stroke()
+
# Rotate a rasterized loop such that it aligns to when the parameters loop
def rotate_to_jump_point(points):
- last_pt = points[0]
- for pt_i in range(1, len(points)):
- pt = points[pt_i]
- delta = last_pt[1] - pt[1]
- if abs(delta) > numpy.pi:
- print(delta)
- return points[pt_i:] + points[:pt_i]
- last_pt = pt
- return points
+ last_pt = points[0]
+ for pt_i in range(1, len(points)):
+ pt = points[pt_i]
+ delta = last_pt[1] - pt[1]
+ if abs(delta) > numpy.pi:
+ print(delta)
+ return points[pt_i:] + points[:pt_i]
+ last_pt = pt
+ return points
+
# shift points vertically by dy.
def y_shift(points, dy):
- return [(x, y + dy) for x, y in points]
+ return [(x, y + dy) for x, y in points]
+
lines1_theta_part = rotate_to_jump_point(to_theta_loop(lines1, 0))
lines2_theta_part = rotate_to_jump_point(to_theta_loop(lines2))
@@ -106,297 +117,318 @@
p1 = Polygon(lines_theta)
-p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min),
- (t1_max, t2_max), (t1_min, t2_max)])
+p2 = Polygon([(t1_min, t2_min), (t1_max, t2_min), (t1_max, t2_max), (t1_min,
+ t2_max)])
# Fully computed theta constrints.
lines_theta = list(p1.intersection(p2).exterior.coords)
-print(", ".join("{%s, %s}" % (a,b) for a, b in lines_theta))
+print("Theta constraint.")
+print(", ".join("{%s, %s}" % (a, b) for a, b in lines_theta))
lines1_theta_back = back_to_xy_loop(lines1_theta)
lines2_theta_back = back_to_xy_loop(lines2_theta)
lines_theta_back = back_to_xy_loop(lines_theta)
+
# Get the closest point to a line from a test pt.
def get_closest(prev, cur, pt):
- dx_ang = (cur[0] - prev[0])
- dy_ang = (cur[1] - prev[1])
+ dx_ang = (cur[0] - prev[0])
+ dy_ang = (cur[1] - prev[1])
- d = numpy.sqrt(dx_ang ** 2 + dy_ang ** 2)
- if (d < 0.000001):
- return prev, numpy.sqrt((prev[0] - pt[0]) ** 2 + (prev[1] - pt[1]) ** 2)
+ d = numpy.sqrt(dx_ang**2 + dy_ang**2)
+ if (d < 0.000001):
+ return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+
+ pdx = -dy_ang / d
+ pdy = dx_ang / d
+
+ dpx = pt[0] - prev[0]
+ dpy = pt[1] - prev[1]
+
+ alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
+
+ if (alpha < 0):
+ return prev, numpy.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
+ elif (alpha > 1):
+ return cur, numpy.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
+ else:
+ return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
+ abs(dpx * pdx + dpy * pdy)
- pdx = -dy_ang / d
- pdy = dx_ang / d
-
- dpx = pt[0] - prev[0]
- dpy = pt[1] - prev[1]
-
- alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
-
- if (alpha < 0):
- return prev, numpy.sqrt((prev[0] - pt[0]) ** 2 + (prev[1] - pt[1]) ** 2)
- elif (alpha > 1):
- return cur, numpy.sqrt((cur[0] - pt[0]) ** 2 + (cur[1] - pt[1]) ** 2)
- else:
- return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
- abs(dpx * pdx + dpy * pdy)
-
-#
+#
def closest_segment(lines, pt):
- c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
- for i in range(1, len(lines)):
- prev = lines[i - 1]
- cur = lines[i]
- c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
- if c_pt_new_dist < c_pt_dist:
- c_pt = c_pt_new
- c_pt_dist = c_pt_new_dist
- return c_pt, c_pt_dist
+ c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
+ for i in range(1, len(lines)):
+ prev = lines[i - 1]
+ cur = lines[i]
+ c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
+ if c_pt_new_dist < c_pt_dist:
+ c_pt = c_pt_new
+ c_pt_dist = c_pt_new_dist
+ return c_pt, c_pt_dist
+
# Create a GTK+ widget on which we will draw using Cairo
class Silly(basic_window.BaseWindow):
- def __init__(self):
- super().__init__()
+ def __init__(self):
+ super(Silly, self).__init__()
- self.theta_version = True
- self.reinit_extents()
+ self.theta_version = True
+ self.reinit_extents()
- self.last_pos = (20, 20)
- self.c_i_select = 0
- self.click_bool = False
+ self.last_pos = (numpy.pi / 2.0, 1.0)
+ self.circular_index_select = -1
+ # Extra stuff for drawing lines.
+ self.segments = []
+ self.prev_segment_pt = None
+ self.now_segment_pt = None
- # Extra stuff for drawing lines.
- self.segs = []
- self.prev_seg_pt = None
- self.now_seg_pt = None
-
- def reinit_extents(self):
- if self.theta_version:
- self.extents_x_min = -numpy.pi * 2
- self.extents_x_max = numpy.pi * 2
- self.extents_y_min = -numpy.pi * 2
- self.extents_y_max = numpy.pi * 2
- else:
- self.extents_x_min = -40.0
- self.extents_x_max = 40.0
- self.extents_y_min = -4.0
- self.extents_y_max = 110.0
-
- self.init_extents((0.5*(self.extents_x_min+self.extents_x_max), 0.5*(self.extents_y_max+self.extents_y_min)),
- (1.0*(self.extents_x_max-self.extents_x_min), 1.0*(self.extents_y_max-self.extents_y_min)))
-
- # Handle the expose-event by drawing
- def handle_draw(self, cr):
- # use "with px(cr): blah;" to transform to pixel coordinates.
-
- # Fill the background color of the window with grey
- cr.set_source_rgb(0.5, 0.5, 0.5)
- cr.paint()
-
- # Draw a extents rectangle
- cr.set_source_rgb(1.0, 1.0, 1.0)
- cr.rectangle(self.extents_x_min, self.extents_y_min,
- (self.extents_x_max-self.extents_x_min), self.extents_y_max-self.extents_y_min)
- cr.fill()
-
- if not self.theta_version:
-
- # Draw a filled white rectangle.
- cr.set_source_rgb(1.0, 1.0, 1.0)
- cr.rectangle(-2.0, -2.0, 4.0, 4.0)
- cr.fill()
-
- cr.set_source_rgb(0.0, 0.0, 1.0)
- cr.arc(joint_center[0], joint_center[1], l2 + l1, 0, 2 * numpy.pi)
- with px(cr): cr.stroke()
- cr.arc(joint_center[0], joint_center[1], l1 - l2, 0, 2 * numpy.pi)
- with px(cr): cr.stroke()
-
- else:
- # Draw a filled white rectangle.
- cr.set_source_rgb(1.0, 1.0, 1.0)
- cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2, numpy.pi * 2)
- cr.fill()
-
- if self.theta_version:
- cr.set_source_rgb(0.0, 0.0, 1.0)
- for i in range(-6, 6):
- cr.move_to(-40, -40 + i * numpy.pi)
- cr.line_to(40, 40 + i * numpy.pi)
- with px(cr): cr.stroke()
-
-
- if not self.theta_version:
- cr.set_source_rgb(0.2, 1.0, 0.2)
- draw_lines(cr, lines2)
-
- if self.theta_version:
- cr.set_source_rgb(0.5, 0.5, 1.0)
- draw_lines(cr, lines_theta)
-
- else:
- cr.set_source_rgb(0.5, 1.0, 1.0)
- draw_lines(cr, lines1)
- draw_lines(cr, lines2)
-
- def set_color(cr, c_i):
- if c_i == -2:
- cr.set_source_rgb(0.0, 0.25, 1.0)
- elif c_i == -1:
- cr.set_source_rgb(0.5, 0.0, 1.0)
- elif c_i == 0:
- cr.set_source_rgb(0.5, 1.0, 1.0)
- elif c_i == 1:
- cr.set_source_rgb(0.0, 0.5, 1.0)
- elif c_i == 2:
- cr.set_source_rgb(0.5, 1.0, 0.5)
+ def reinit_extents(self):
+ if self.theta_version:
+ self.extents_x_min = -numpy.pi * 2
+ self.extents_x_max = numpy.pi * 2
+ self.extents_y_min = -numpy.pi * 2
+ self.extents_y_max = numpy.pi * 2
else:
- cr.set_source_rgb(1.0, 0.0, 0.0)
+ self.extents_x_min = -40.0 * 0.0254
+ self.extents_x_max = 40.0 * 0.0254
+ self.extents_y_min = -4.0 * 0.0254
+ self.extents_y_max = 110.0 * 0.0254
- def get_ci(pt):
- t1, t2 = pt
- c_i = int(numpy.floor((t2 - t1) / numpy.pi))
- return c_i
+ self.init_extents(
+ (0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
+ (self.extents_y_max + self.extents_y_min)),
+ (1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
+ (self.extents_y_max - self.extents_y_min)))
- cr.set_source_rgb(0.0, 0.0, 1.0)
- lines = subdivide_theta(lines_theta)
- o_c_i = c_i = get_ci(lines[0])
- p_xy = to_xy(lines[0][0], lines[0][1])
- if c_i == self.c_i_select: cr.move_to(p_xy[0] + c_i * 0, p_xy[1])
- for pt in lines[1:]:
- p_xy = to_xy(pt[0], pt[1])
- c_i = get_ci(pt)
- if o_c_i == self.c_i_select: cr.line_to(p_xy[0] + o_c_i * 0, p_xy[1])
- if c_i != o_c_i:
- o_c_i = c_i
- with px(cr): cr.stroke()
- if c_i == self.c_i_select: cr.move_to(p_xy[0] + c_i * 0, p_xy[1])
+ # Handle the expose-event by drawing
+ def handle_draw(self, cr):
+ # use "with px(cr): blah;" to transform to pixel coordinates.
- with px(cr): cr.stroke()
+ # Fill the background color of the window with grey
+ cr.set_source_rgb(0.5, 0.5, 0.5)
+ cr.paint()
- if not self.theta_version:
- t1, t2 = to_theta(self.last_pos[0], self.last_pos[1], (self.c_i_select % 2) == 0)
- x, y = joint_center[0], joint_center[1]
- cr.move_to(x, y)
+ # Draw a extents rectangle
+ cr.set_source_rgb(1.0, 1.0, 1.0)
+ cr.rectangle(self.extents_x_min, self.extents_y_min,
+ (self.extents_x_max - self.extents_x_min),
+ self.extents_y_max - self.extents_y_min)
+ cr.fill()
- x += numpy.cos(t1) * l1
- y += numpy.sin(t1) * l1
- cr.line_to(x, y)
- x += numpy.cos(t2) * l2
- y += numpy.sin(t2) * l2
- cr.line_to(x, y)
- with px(cr): cr.stroke()
+ if not self.theta_version:
+ # Draw a filled white rectangle.
+ cr.set_source_rgb(1.0, 1.0, 1.0)
+ cr.rectangle(-2.0, -2.0, 4.0, 4.0)
+ cr.fill()
- cr.move_to(self.last_pos[0], self.last_pos[1])
- cr.set_source_rgb(0.0, 1.0, 0.2)
- draw_px_cross(cr, 20)
+ cr.set_source_rgb(0.0, 0.0, 1.0)
+ cr.arc(joint_center[0], joint_center[1], l2 + l1, 0,
+ 2.0 * numpy.pi)
+ with px(cr):
+ cr.stroke()
+ cr.arc(joint_center[0], joint_center[1], l1 - l2, 0,
+ 2.0 * numpy.pi)
+ with px(cr):
+ cr.stroke()
+ else:
+ # Draw a filled white rectangle.
+ cr.set_source_rgb(1.0, 1.0, 1.0)
+ cr.rectangle(-numpy.pi, -numpy.pi, numpy.pi * 2.0, numpy.pi * 2.0)
+ cr.fill()
- if self.theta_version:
- cr.set_source_rgb(0.0, 1.0, 0.2)
+ if self.theta_version:
+ cr.set_source_rgb(0.0, 0.0, 1.0)
+ for i in range(-6, 6):
+ cr.move_to(-40, -40 + i * numpy.pi)
+ cr.line_to(40, 40 + i * numpy.pi)
+ with px(cr):
+ cr.stroke()
- cr.set_source_rgb(0.0, 1.0, 0.2)
- cr.move_to(self.last_pos[0], self.last_pos[1])
- draw_px_cross(cr, 5)
+ if self.theta_version:
+ cr.set_source_rgb(0.5, 0.5, 1.0)
+ draw_lines(cr, lines_theta)
+ else:
+ cr.set_source_rgb(0.5, 1.0, 1.0)
+ draw_lines(cr, lines1)
+ draw_lines(cr, lines2)
- c_pt, dist = closest_segment(lines_theta, self.last_pos)
- print("dist:", dist, c_pt, self.last_pos)
- cr.set_source_rgb(0.0, 1.0, 1.0)
- cr.move_to(c_pt[0], c_pt[1])
- draw_px_cross(cr, 5)
+ def set_color(cr, circular_index):
+ if circular_index == -2:
+ cr.set_source_rgb(0.0, 0.25, 1.0)
+ elif circular_index == -1:
+ cr.set_source_rgb(0.5, 0.0, 1.0)
+ elif circular_index == 0:
+ cr.set_source_rgb(0.5, 1.0, 1.0)
+ elif circular_index == 1:
+ cr.set_source_rgb(0.0, 0.5, 1.0)
+ elif circular_index == 2:
+ cr.set_source_rgb(0.5, 1.0, 0.5)
+ else:
+ cr.set_source_rgb(1.0, 0.0, 0.0)
- cr.set_source_rgb(0.0, 0.5, 1.0)
- for seg in self.segs:
- seg.DrawTo(cr, self.theta_version)
- with px(cr): cr.stroke()
+ def get_circular_index(pt):
+ theta1, theta2 = pt
+ circular_index = int(numpy.floor((theta2 - theta1) / numpy.pi))
+ return circular_index
- cr.set_source_rgb(0.0, 1.0, 0.5)
- seg = self.current_seg()
- print(seg)
- if seg:
- seg.DrawTo(cr, self.theta_version)
- with px(cr): cr.stroke()
+ cr.set_source_rgb(0.0, 0.0, 1.0)
+ lines = subdivide_theta(lines_theta)
+ o_circular_index = circular_index = get_circular_index(lines[0])
+ p_xy = to_xy(lines[0][0], lines[0][1])
+ if circular_index == self.circular_index_select:
+ cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
+ for pt in lines[1:]:
+ p_xy = to_xy(pt[0], pt[1])
+ circular_index = get_circular_index(pt)
+ if o_circular_index == self.circular_index_select:
+ cr.line_to(p_xy[0] + o_circular_index * 0, p_xy[1])
+ if circular_index != o_circular_index:
+ o_circular_index = circular_index
+ with px(cr):
+ cr.stroke()
+ if circular_index == self.circular_index_select:
+ cr.move_to(p_xy[0] + circular_index * 0, p_xy[1])
- def cur_pt_in_theta(self):
- if self.theta_version: return self.last_pos
- t1, t2 = to_theta(self.last_pos[0], self.last_pos[1], (self.c_i_select % 2) == 0)
- n_ci = int(numpy.floor((t2 - t1) / numpy.pi))
- t2 = t2 + ((self.c_i_select - n_ci)) * numpy.pi
- return (t1, t2)
+ with px(cr):
+ cr.stroke()
- # Current seg based on which mode the drawing system is in.
- def current_seg(self):
- if self.prev_seg_pt and self.now_seg_pt:
- if self.theta_version:
- return AngleSegment(self.prev_seg_pt, self.now_seg_pt)
- else:
- return XYSegment(self.prev_seg_pt, self.now_seg_pt)
+ if not self.theta_version:
+ theta1, theta2 = to_theta(self.last_pos, self.circular_index_select)
+ x, y = joint_center[0], joint_center[1]
+ cr.move_to(x, y)
- def do_key_press(self, event):
- print("Gdk.KEY_" + Gdk.keyval_name(event.keyval))
- print("Gdk.KEY_" + Gdk.keyval_name(Gdk.keyval_to_lower(event.keyval)) + " is the lower case key for this button press.")
- if ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_q ):
- print("Found q key and exiting.")
- quit_main_loop()
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_c ):
- self.c_i_select += 1
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_v ):
- self.c_i_select -= 1
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_f ):
- self.click_bool = not self.click_bool
+ x += numpy.cos(theta1) * l1
+ y += numpy.sin(theta1) * l1
+ cr.line_to(x, y)
+ x += numpy.cos(theta2) * l2
+ y += numpy.sin(theta2) * l2
+ cr.line_to(x, y)
+ with px(cr):
+ cr.stroke()
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_w ):
- seg = self.current_seg();
- if seg: self.segs.append(seg)
- self.prev_seg_pt = self.now_seg_pt
+ cr.move_to(self.last_pos[0], self.last_pos[1])
+ cr.set_source_rgb(0.0, 1.0, 0.2)
+ draw_px_cross(cr, 20)
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_r ):
- self.prev_seg_pt = self.now_seg_pt
+ if self.theta_version:
+ cr.set_source_rgb(0.0, 1.0, 0.2)
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_p ):
- print(repr(self.segs))
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_g ):
- if self.segs:
- print(repr(self.segs[0].ToThetaPoints()))
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_e ):
- best_pt = self.now_seg_pt
- best_dist = 1e10
- for seg in self.segs:
- d = angle_dist_sqr(seg.st, self.now_seg_pt)
- if (d < best_dist):
- best_pt = seg.st
- best_dist = d;
- d = angle_dist_sqr(seg.ed, self.now_seg_pt)
- if (d < best_dist):
- best_pt = seg.ed
- best_dist = d
- self.now_seg_pt = best_pt
+ cr.set_source_rgb(0.0, 1.0, 0.2)
+ cr.move_to(self.last_pos[0], self.last_pos[1])
+ draw_px_cross(cr, 5)
- elif ( Gdk.keyval_to_lower(event.keyval) == Gdk.KEY_t ):
- if self.theta_version:
- t1, t2 = self.last_pos
- data = to_xy(t1, t2)
- self.c_i_select = int(numpy.floor((t2 - t1) / numpy.pi))
- self.last_pos = (data[0], data[1])
- else:
- self.last_pos = self.cur_pt_in_theta()
+ c_pt, dist = closest_segment(lines_theta, self.last_pos)
+ print("dist:", dist, c_pt, self.last_pos)
+ cr.set_source_rgb(0.0, 1.0, 1.0)
+ cr.move_to(c_pt[0], c_pt[1])
+ draw_px_cross(cr, 5)
- self.theta_version = not self.theta_version
- self.reinit_extents()
- self.redraw()
+ cr.set_source_rgb(0.0, 0.5, 1.0)
+ for segment in self.segments:
+ color = [0, random.random(), 1]
+ random.shuffle(color)
+ cr.set_source_rgb(*color)
+ segment.DrawTo(cr, self.theta_version)
+ with px(cr):
+ cr.stroke()
- def do_button_press(self, event):
- print(event)
- print(event.x, event.y, event.button)
- self.last_pos = (event.x, event.y)
- self.now_seg_pt = self.cur_pt_in_theta();
+ cr.set_source_rgb(0.0, 1.0, 0.5)
+ segment = self.current_seg()
+ if segment:
+ print(segment)
+ segment.DrawTo(cr, self.theta_version)
+ with px(cr):
+ cr.stroke()
- self.redraw()
+ def cur_pt_in_theta(self):
+ if self.theta_version: return self.last_pos
+ return to_theta(self.last_pos, self.circular_index_select)
+
+ # Current segment based on which mode the drawing system is in.
+ def current_seg(self):
+ if self.prev_segment_pt and self.now_segment_pt:
+ if self.theta_version:
+ return AngleSegment(self.prev_segment_pt, self.now_segment_pt)
+ else:
+ return XYSegment(self.prev_segment_pt, self.now_segment_pt)
+
+ def do_key_press(self, event):
+ keyval = Gdk.keyval_to_lower(event.keyval)
+ print("Gdk.KEY_" + Gdk.keyval_name(keyval))
+ if keyval == Gdk.KEY_q:
+ print("Found q key and exiting.")
+ quit_main_loop()
+ elif keyval == Gdk.KEY_c:
+ # Increment which arm solution we render
+ self.circular_index_select += 1
+ print(self.circular_index_select)
+ elif keyval == Gdk.KEY_v:
+ # Decrement which arm solution we render
+ self.circular_index_select -= 1
+ print(self.circular_index_select)
+ elif keyval == Gdk.KEY_w:
+ # Add this segment to the segment list.
+ segment = self.current_seg()
+ if segment: self.segments.append(segment)
+ self.prev_segment_pt = self.now_segment_pt
+
+ elif keyval == Gdk.KEY_r:
+ self.prev_segment_pt = self.now_segment_pt
+
+ elif keyval == Gdk.KEY_p:
+ # Print out the segments.
+ print(repr(self.segments))
+ elif keyval == Gdk.KEY_g:
+ # Generate theta points.
+ if self.segments:
+ print(repr(self.segments[0].ToThetaPoints()))
+ elif keyval == Gdk.KEY_e:
+ best_pt = self.now_segment_pt
+ best_dist = 1e10
+ for segment in self.segments:
+ d = angle_dist_sqr(segment.start, self.now_segment_pt)
+ if (d < best_dist):
+ best_pt = segment.start
+ best_dist = d
+ d = angle_dist_sqr(segment.end, self.now_segment_pt)
+ if (d < best_dist):
+ best_pt = segment.end
+ best_dist = d
+ self.now_segment_pt = best_pt
+
+ elif keyval == Gdk.KEY_t:
+ # Toggle between theta and xy renderings
+ if self.theta_version:
+ theta1, theta2 = self.last_pos
+ data = to_xy(theta1, theta2)
+ self.circular_index_select = int(
+ numpy.floor((theta2 - theta1) / numpy.pi))
+ self.last_pos = (data[0], data[1])
+ else:
+ self.last_pos = self.cur_pt_in_theta()
+
+ self.theta_version = not self.theta_version
+ self.reinit_extents()
+ self.redraw()
+
+ def do_button_press(self, event):
+ self.last_pos = (event.x, event.y)
+ self.now_segment_pt = self.cur_pt_in_theta()
+ print('Clicked at theta: (%f, %f)' % (self.now_segment_pt[0],
+ self.now_segment_pt[1]))
+ if not self.theta_version:
+ print('Clicked at xy, circular index: (%f, %f, %f)' %
+ (self.last_pos[0], self.last_pos[1],
+ self.circular_index_select))
+
+ self.redraw()
+
silly = Silly()
-silly.segs = graph_generate.segs
+silly.segments = graph_generate.segments
basic_window.RunApp()