| #!/usr/bin/python3 |
| |
| import numpy |
| import scipy.optimize |
| from matplotlib import pylab |
| |
| dt = 0.05 |
| |
| # This module computes a NMPC which solves the non-holonomic point |
| # stabilization problem for a mobile robot. The algorithm is currently |
| # too slow to run on a robot in real-time, but is fast enough to use offline |
| # and to use to compare different parameters for NMPCs. |
| # |
| # Inital algorithm from http://www.ece.ufrgs.br/~fetter/icma05_608.pdf |
| |
| |
| def cartesian_to_polar(X_cartesian): |
| """Converts a cartesian coordinate to polar. |
| |
| Args: |
| X_cartesian, numpy.matrix[3, 1] with x, y, theta as rows. |
| |
| Returns: |
| numpy.matrix[3, 1] with e, phi, alpha as rows. |
| """ |
| phi = numpy.arctan2(X_cartesian[1, 0], X_cartesian[0, 0]) |
| return numpy.matrix([[numpy.hypot(X_cartesian[0, 0], X_cartesian[1, 0])], |
| [phi], [X_cartesian[2, 0] - phi]]) |
| |
| |
| def polar_to_cartesian(X_polar): |
| """Converts a polar coordinate to cartesian. |
| |
| Args: |
| X_polar, numpy.matrix[3, 1] with e, phi, alpha as rows. |
| |
| Returns: |
| numpy.matrix[3, 1] with x, y, theta as rows. |
| """ |
| return numpy.matrix([[X_polar[0, 0] * numpy.cos(X_polar[1, 0])], |
| [X_polar[0, 0] * numpy.sin(X_polar[1, 0])], |
| [X_polar[1, 0] + X_polar[2, 0]]]) |
| |
| |
| def simulate_dynamics(X_cartesian, U): |
| """Calculates the robot location after 1 timestep. |
| |
| Args: |
| X_cartesian, numpy.matrix[3, 1] with the starting location in |
| cartesian coordinates. |
| U, numpy.matrix[2, 1] with velocity, angular_velocity as rows. |
| |
| Returns: |
| numpy.matrix[3, 1] with the cartesian coordinate. |
| """ |
| X_cartesian += numpy.matrix([[U[0, 0] * numpy.cos(X_cartesian[2, 0]) * dt], |
| [U[0, 0] * numpy.sin(X_cartesian[2, 0]) * dt], |
| [U[1, 0] * dt]]) |
| |
| return X_cartesian |
| |
| |
| def U_from_array(U_array): |
| """Converts the U array from the optimizer to a bunch of column vectors. |
| |
| Args: |
| U_array, numpy.array[N] The U coordinates in v, av, v, av, ... |
| |
| Returns: |
| numpy.matrix[2, N/2] with [[v, v, v, ...], [av, av, av, ...]] |
| """ |
| return numpy.matrix(U_array).reshape((2, -1), order='F') |
| |
| |
| def U_to_array(U_matrix): |
| """Converts the U matrix to the U array for the optimizer. |
| |
| Args: |
| U_matrix, numpy.matrix[2, N/2] with [[v, v, v, ...], [av, av, av, ...]] |
| |
| Returns: |
| numpy.array[N] The U coordinates in v, av, v, av, ... |
| """ |
| return numpy.array(U_matrix.reshape((1, -1), order='F')) |
| |
| |
| def cost(U_array, X_cartesian): |
| """Computes the cost given the inital position and the U array. |
| |
| Args: |
| U_array: numpy.array[N] The U coordinates. |
| X_cartesian: numpy.matrix[3, 1] The cartesian coordinates of the starting |
| location. |
| |
| Returns: |
| double, The quadratic cost of evaluating U. |
| """ |
| X_cartesian_mod = X_cartesian.copy() |
| U_matrix = U_from_array(U_array) |
| my_cost = 0 |
| Q = numpy.matrix([[0.01, 0, 0], [0, 0.01, 0], [0, 0, 0.01]]) / dt / dt |
| R = numpy.matrix([[0.001, 0], [0, 0.001]]) / dt / dt |
| for U in U_matrix.T: |
| # TODO(austin): Let it go to the point from either side. |
| U = U.T |
| X_cartesian_mod = simulate_dynamics(X_cartesian_mod, U) |
| X_current_polar = cartesian_to_polar(X_cartesian_mod) |
| my_cost += U.T * R * U + X_current_polar.T * Q * X_current_polar |
| |
| return my_cost |
| |
| |
| if __name__ == '__main__': |
| X_cartesian = numpy.matrix([[-1.0], [-1.0], [0.0]]) |
| x_array = [] |
| y_array = [] |
| theta_array = [] |
| |
| e_array = [] |
| phi_array = [] |
| alpha_array = [] |
| |
| cost_array = [] |
| |
| time_array = [] |
| u0_array = [] |
| u1_array = [] |
| |
| num_steps = 20 |
| |
| U_array = numpy.zeros((num_steps * 2)) |
| for i in range(400): |
| print('Iteration', i) |
| # Solve the NMPC |
| U_array, fx, _, _, _ = scipy.optimize.fmin_slsqp(cost, |
| U_array.copy(), |
| bounds=[(-1, 1), |
| (-7, 7)] * |
| num_steps, |
| args=(X_cartesian, ), |
| iter=500, |
| full_output=True) |
| U_matrix = U_from_array(U_array) |
| |
| # Simulate the dynamics |
| X_cartesian = simulate_dynamics(X_cartesian, U_matrix[:, 0]) |
| |
| # Save variables for plotting. |
| cost_array.append(fx[0, 0]) |
| u0_array.append(U_matrix[0, 0]) |
| u1_array.append(U_matrix[1, 0]) |
| x_array.append(X_cartesian[0, 0]) |
| y_array.append(X_cartesian[1, 0]) |
| theta_array.append(X_cartesian[2, 0]) |
| time_array.append(i * dt) |
| X_polar = cartesian_to_polar(X_cartesian) |
| e_array.append(X_polar[0, 0]) |
| phi_array.append(X_polar[1, 0]) |
| alpha_array.append(X_polar[2, 0]) |
| |
| U_array = U_to_array( |
| numpy.hstack((U_matrix[:, 1:], numpy.matrix([[0], [0]])))) |
| |
| if fx < 1e-05: |
| print('Cost is', fx, 'after', i, 'cycles, finishing early') |
| break |
| |
| # Plot |
| pylab.figure('xy') |
| pylab.plot(x_array, y_array, label='trajectory') |
| |
| pylab.figure('time') |
| pylab.plot(time_array, x_array, label='x') |
| pylab.plot(time_array, y_array, label='y') |
| pylab.plot(time_array, theta_array, label='theta') |
| pylab.plot(time_array, e_array, label='e') |
| pylab.plot(time_array, phi_array, label='phi') |
| pylab.plot(time_array, alpha_array, label='alpha') |
| pylab.plot(time_array, cost_array, label='cost') |
| pylab.legend() |
| |
| pylab.figure('u') |
| pylab.plot(time_array, u0_array, label='u0') |
| pylab.plot(time_array, u1_array, label='u1') |
| pylab.legend() |
| |
| pylab.show() |