| #ifndef FRC971_VISION_TARGET_MAPPER_H_ |
| #define FRC971_VISION_TARGET_MAPPER_H_ |
| |
| #include <unordered_map> |
| |
| #include "absl/strings/str_format.h" |
| #include "ceres/ceres.h" |
| |
| #include "aos/events/simulated_event_loop.h" |
| #include "frc971/vision/ceres/types.h" |
| #include "frc971/vision/target_map_generated.h" |
| #include "frc971/vision/visualize_robot.h" |
| |
| namespace frc971::vision { |
| |
| // Estimates positions of vision targets (ex. April Tags) using |
| // target detections relative to a robot (which were computed using robot |
| // positions at the time of those detections). Solves SLAM problem to estimate |
| // target locations using deltas between consecutive target detections. |
| class TargetMapper { |
| public: |
| using TargetId = int; |
| using ConfidenceMatrix = Eigen::Matrix<double, 6, 6>; |
| |
| struct TargetPose { |
| TargetId id; |
| ceres::examples::Pose3d pose; |
| }; |
| |
| // target_poses_path is the path to a TargetMap json with initial guesses for |
| // the actual locations of the targets on the field. |
| // target_constraints are the deltas between consecutive target detections, |
| // and are usually prepared by the DataAdapter class below. |
| TargetMapper(std::string_view target_poses_path, |
| const ceres::examples::VectorOfConstraints &target_constraints); |
| // Alternate constructor for tests. |
| // Takes in the actual intial guesses instead of a file containing them |
| TargetMapper(const ceres::examples::MapOfPoses &target_poses, |
| const ceres::examples::VectorOfConstraints &target_constraints); |
| |
| // Solves for the target map. If output_dir is set, the map will be saved to |
| // output_dir/field_name.json |
| void Solve(std::string_view field_name, |
| std::optional<std::string_view> output_dir = std::nullopt); |
| |
| // Prints target poses into a TargetMap flatbuffer json |
| std::string MapToJson(std::string_view field_name) const; |
| |
| static std::optional<TargetPose> GetTargetPoseById( |
| std::vector<TargetPose> target_poses, TargetId target_id); |
| |
| // Version that gets based on internal target_poses |
| std::optional<TargetPose> GetTargetPoseById(TargetId target_id) const; |
| |
| ceres::examples::MapOfPoses target_poses() { return target_poses_; } |
| |
| // Cost function for the secondary solver finding out where the whole map fits |
| // in the world |
| template <typename S> |
| bool operator()(const S *const translation, const S *const rotation, |
| S *residual) const; |
| |
| void DumpConstraints(std::string_view path) const; |
| void DumpStats(std::string_view path) const; |
| void PrintDiffs() const; |
| |
| private: |
| // Error in an estimated pose |
| struct PoseError { |
| double angle; |
| double distance; |
| }; |
| |
| // Stores info on how much all the constraints differ from our solved target |
| // map |
| struct Stats { |
| // Average error for translation and rotation |
| PoseError avg_err; |
| // Standard deviation for translation and rotation error |
| PoseError std_dev; |
| // Maximum error for translation and rotation |
| PoseError max_err; |
| }; |
| |
| // Compute the error of a single constraint |
| PoseError ComputeError(const ceres::examples::Constraint3d &constraint) const; |
| // Compute cumulative stats for all constraints |
| Stats ComputeStats() const; |
| // Removes constraints with very large errors |
| void RemoveOutlierConstraints(); |
| |
| void CountConstraints(); |
| |
| // Constructs the nonlinear least squares optimization problem from the |
| // pose graph constraints. |
| void BuildTargetPoseOptimizationProblem( |
| const ceres::examples::VectorOfConstraints &constraints, |
| ceres::examples::MapOfPoses *poses, ceres::Problem *problem); |
| |
| // Constructs the nonlinear least squares optimization problem for the solved |
| // -> actual pose solver. |
| std::unique_ptr<ceres::CostFunction> BuildMapFittingOptimizationProblem( |
| ceres::Problem *problem); |
| |
| // Create and display a visualization of the graph connectivity of the |
| // constraints |
| void DisplayConstraintGraph(); |
| |
| // Create and display a visualization of the map solution (vs. the input map) |
| void DisplaySolvedVsInitial(); |
| |
| // Returns true if the solve was successful. |
| bool SolveOptimizationProblem(ceres::Problem *problem); |
| |
| ceres::examples::MapOfPoses ideal_target_poses_; |
| ceres::examples::MapOfPoses target_poses_; |
| ceres::examples::VectorOfConstraints target_constraints_; |
| |
| // Counts of each pair of target ids we observe, so we can scale cost based on |
| // the inverse of this and remove bias towards certain pairs |
| std::map<std::pair<TargetId, TargetId>, size_t> constraint_counts_; |
| |
| // Transformation moving the target map we solved for to where it actually |
| // should be in the world |
| Eigen::Translation3d T_frozen_actual_; |
| Eigen::Quaterniond R_frozen_actual_; |
| |
| const double kFieldWidth_ = 20.0; // 20 meters across |
| const int kImageWidth_ = 1000; |
| const int kImageHeight_ = |
| kImageWidth_ * 3.0 / 4.0; // Roughly matches field aspect ratio |
| mutable VisualizeRobot vis_robot_; |
| |
| Stats stats_with_outliers_; |
| }; |
| |
| // Utility functions for dealing with ceres::examples::Pose3d structs |
| class PoseUtils { |
| public: |
| // Embeds a 3d pose into an affine transformation |
| static Eigen::Affine3d Pose3dToAffine3d( |
| const ceres::examples::Pose3d &pose3d); |
| // Inverse of above function |
| static ceres::examples::Pose3d Affine3dToPose3d(const Eigen::Affine3d &H); |
| |
| // Computes pose_2 relative to pose_1. This is equivalent to (pose_1^-1 * |
| // pose_2) |
| static ceres::examples::Pose3d ComputeRelativePose( |
| const ceres::examples::Pose3d &pose_1, |
| const ceres::examples::Pose3d &pose_2); |
| |
| // Computes pose_2 given a pose_1 and pose_2 relative to pose_1. This is |
| // equivalent to (pose_1 * pose_2_relative) |
| static ceres::examples::Pose3d ComputeOffsetPose( |
| const ceres::examples::Pose3d &pose_1, |
| const ceres::examples::Pose3d &pose_2_relative); |
| |
| // Converts a rotation with roll, pitch, and yaw into a quaternion |
| static Eigen::Quaterniond EulerAnglesToQuaternion(const Eigen::Vector3d &rpy); |
| // Inverse of above function |
| static Eigen::Vector3d QuaternionToEulerAngles(const Eigen::Quaterniond &q); |
| // Converts a 3d rotation matrix into a rotation with roll, pitch, and yaw |
| static Eigen::Vector3d RotationMatrixToEulerAngles(const Eigen::Matrix3d &R); |
| |
| // Builds a TargetPoseFbs from a TargetPose |
| static flatbuffers::Offset<TargetPoseFbs> TargetPoseToFbs( |
| const TargetMapper::TargetPose &target_pose, |
| flatbuffers::FlatBufferBuilder *fbb); |
| // Converts a TargetPoseFbs to a TargetPose |
| static TargetMapper::TargetPose TargetPoseFromFbs( |
| const TargetPoseFbs &target_pose_fbs); |
| }; |
| |
| // Transforms robot position and target detection data into target constraints |
| // to be used for mapping. |
| class DataAdapter { |
| public: |
| // Pairs target detection with a time point |
| struct TimestampedDetection { |
| aos::distributed_clock::time_point time; |
| // Pose of target relative to robot |
| Eigen::Affine3d H_robot_target; |
| // Horizontal distance from camera to target, used for confidence |
| // calculation |
| double distance_from_camera; |
| // A measure of how much distortion affected this detection from 0-1. |
| double distortion_factor; |
| TargetMapper::TargetId id; |
| }; |
| |
| // Pairs consecutive target detections that are not too far apart in time into |
| // constraints. Meant to be used on a system without a position measurement. |
| // Assumes timestamped_target_detections is in chronological order. |
| // max_dt is the maximum time between two target detections to match them up. |
| // If too much time passes, the recoding device (box of pis) could have moved |
| // too much |
| static ceres::examples::VectorOfConstraints MatchTargetDetections( |
| const std::vector<TimestampedDetection> ×tamped_target_detections, |
| aos::distributed_clock::duration max_dt = std::chrono::milliseconds(10)); |
| |
| // Computes inverse of covariance matrix, assuming there was a target |
| // detection between robot movement over the given time period. Ceres calls |
| // this matrix the "information" |
| static TargetMapper::ConfidenceMatrix ComputeConfidence( |
| const TimestampedDetection &detection_start, |
| const TimestampedDetection &detection_end); |
| |
| // Computes the constraint between the start and end pose of the targets: the |
| // relative pose between the start and end target locations in the frame of |
| // the start target. |
| static ceres::examples::Constraint3d ComputeTargetConstraint( |
| const TimestampedDetection &target_detection_start, |
| const TimestampedDetection &target_detection_end, |
| const TargetMapper::ConfidenceMatrix &confidence); |
| }; |
| |
| } // namespace frc971::vision |
| |
| namespace ceres::examples { |
| template <typename Sink> |
| void AbslStringify(Sink &sink, ceres::examples::Pose3d pose) { |
| auto rpy = frc971::vision::PoseUtils::QuaternionToEulerAngles(pose.q); |
| absl::Format(&sink, |
| "{x: %.3f, y: %.3f, z: %.3f, roll: %.3f, pitch: " |
| "%.3f, yaw: %.3f}", |
| pose.p(0), pose.p(1), pose.p(2), rpy(0), rpy(1), rpy(2)); |
| } |
| |
| template <typename Sink> |
| void AbslStringify(Sink &sink, ceres::examples::Constraint3d constraint) { |
| absl::Format(&sink, "{id_begin: %d, id_end: %d, pose: ", constraint.id_begin, |
| constraint.id_end); |
| AbslStringify(sink, constraint.t_be); |
| sink.Append("}"); |
| } |
| } // namespace ceres::examples |
| |
| #endif // FRC971_VISION_TARGET_MAPPER_H_ |