| #include "aos/ipc_lib/lockless_queue.h" |
| |
| #include <linux/futex.h> |
| #include <sys/types.h> |
| #include <syscall.h> |
| #include <unistd.h> |
| #include <algorithm> |
| #include <iomanip> |
| #include <iostream> |
| #include <sstream> |
| |
| #include "aos/ipc_lib/lockless_queue_memory.h" |
| #include "aos/realtime.h" |
| #include "aos/util/compiler_memory_barrier.h" |
| #include "glog/logging.h" |
| |
| namespace aos { |
| namespace ipc_lib { |
| namespace { |
| |
| class GrabQueueSetupLockOrDie { |
| public: |
| GrabQueueSetupLockOrDie(LocklessQueueMemory *memory) : memory_(memory) { |
| const int result = mutex_grab(&(memory->queue_setup_lock)); |
| CHECK(result == 0 || result == 1) << ": " << result; |
| } |
| |
| ~GrabQueueSetupLockOrDie() { mutex_unlock(&(memory_->queue_setup_lock)); } |
| |
| GrabQueueSetupLockOrDie(const GrabQueueSetupLockOrDie &) = delete; |
| GrabQueueSetupLockOrDie &operator=(const GrabQueueSetupLockOrDie &) = delete; |
| |
| private: |
| LocklessQueueMemory *const memory_; |
| }; |
| |
| void Cleanup(LocklessQueueMemory *memory, const GrabQueueSetupLockOrDie &) { |
| // Make sure we start looking at shared memory fresh right now. We'll handle |
| // people dying partway through by either cleaning up after them or not, but |
| // we want to ensure we clean up after anybody who has already died when we |
| // start. |
| aos_compiler_memory_barrier(); |
| |
| const size_t num_senders = memory->num_senders(); |
| const size_t queue_size = memory->queue_size(); |
| const size_t num_messages = memory->num_messages(); |
| |
| // There are a large number of crazy cases here for how things can go wrong |
| // and how we have to recover. They either require us to keep extra track of |
| // what is going on, slowing down the send path, or require a large number of |
| // cases. |
| // |
| // The solution here is to not over-think it. This is running while not real |
| // time during construction. It is allowed to be slow. It will also very |
| // rarely trigger. There is a small uS window where process death is |
| // ambiguous. |
| // |
| // So, build up a list N long, where N is the number of messages. Search |
| // through the entire queue and the sender list (ignoring any dead senders), |
| // and mark down which ones we have seen. Once we have seen all the messages |
| // except the N dead senders, we know which messages are dead. Because the |
| // queue is active while we do this, it may take a couple of go arounds to see |
| // everything. |
| |
| // Do the easy case. Find all senders who have died. See if they are either |
| // consistent already, or if they have copied over to_replace to the scratch |
| // index, but haven't cleared to_replace. Count them. |
| size_t valid_senders = 0; |
| for (size_t i = 0; i < num_senders; ++i) { |
| Sender *sender = memory->GetSender(i); |
| const uint32_t tid = |
| __atomic_load_n(&(sender->tid.futex), __ATOMIC_ACQUIRE); |
| if (tid & FUTEX_OWNER_DIED) { |
| VLOG(3) << "Found an easy death for sender " << i; |
| // We can do a relaxed load here because we're the only person touching |
| // this sender at this point. |
| const Index to_replace = sender->to_replace.RelaxedLoad(); |
| const Index scratch_index = sender->scratch_index.Load(); |
| |
| // I find it easiest to think about this in terms of the set of observable |
| // states. The main code progresses through the following states: |
| |
| // 1) scratch_index = xxx |
| // to_replace = invalid |
| // This is unambiguous. Already good. |
| |
| // 2) scratch_index = xxx |
| // to_replace = yyy |
| // Very ambiguous. Is xxx or yyy the correct one? Need to either roll |
| // this forwards or backwards. |
| |
| // 3) scratch_index = yyy |
| // to_replace = yyy |
| // We are in the act of moving to_replace to scratch_index, but didn't |
| // finish. Easy. |
| |
| // 4) scratch_index = yyy |
| // to_replace = invalid |
| // Finished, but died. Looks like 1) |
| |
| // Any cleanup code needs to follow the same set of states to be robust to |
| // death, so death can be restarted. |
| |
| // Could be 2) or 3). |
| if (to_replace.valid()) { |
| // 3) |
| if (to_replace == scratch_index) { |
| // Just need to invalidate to_replace to finish. |
| sender->to_replace.Invalidate(); |
| |
| // And mark that we succeeded. |
| __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_RELEASE); |
| ++valid_senders; |
| } |
| } else { |
| // 1) or 4). Make sure we aren't corrupted and declare victory. |
| CHECK(scratch_index.valid()); |
| |
| __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_RELEASE); |
| ++valid_senders; |
| } |
| } else { |
| // Not dead. |
| ++valid_senders; |
| } |
| } |
| |
| // If all the senders are (or were made) good, there is no need to do the hard |
| // case. |
| if (valid_senders == num_senders) { |
| return; |
| } |
| |
| VLOG(3) << "Starting hard cleanup"; |
| |
| size_t num_accounted_for = 0; |
| size_t num_missing = 0; |
| ::std::vector<bool> accounted_for(num_messages, false); |
| |
| while ((num_accounted_for + num_missing) != num_messages) { |
| num_missing = 0; |
| for (size_t i = 0; i < num_senders; ++i) { |
| Sender *const sender = memory->GetSender(i); |
| const uint32_t tid = |
| __atomic_load_n(&(sender->tid.futex), __ATOMIC_ACQUIRE); |
| if (tid & FUTEX_OWNER_DIED) { |
| ++num_missing; |
| } else { |
| // We can do a relaxed load here because we're the only person touching |
| // this sender at this point, if it matters. If it's not a dead sender, |
| // then any message it every has will already be accounted for, so this |
| // will always be a NOP. |
| const Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| if (!accounted_for[scratch_index.message_index()]) { |
| ++num_accounted_for; |
| } |
| accounted_for[scratch_index.message_index()] = true; |
| } |
| } |
| |
| for (size_t i = 0; i < queue_size; ++i) { |
| // Same logic as above for scratch_index applies here too. |
| const Index index = memory->GetQueue(i)->RelaxedLoad(); |
| if (!accounted_for[index.message_index()]) { |
| ++num_accounted_for; |
| } |
| accounted_for[index.message_index()] = true; |
| } |
| } |
| |
| while (num_missing != 0) { |
| const size_t starting_num_missing = num_missing; |
| for (size_t i = 0; i < num_senders; ++i) { |
| Sender *sender = memory->GetSender(i); |
| const uint32_t tid = |
| __atomic_load_n(&(sender->tid.futex), __ATOMIC_ACQUIRE); |
| if (tid & FUTEX_OWNER_DIED) { |
| // We can do relaxed loads here because we're the only person touching |
| // this sender at this point. |
| const Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| const Index to_replace = sender->to_replace.RelaxedLoad(); |
| |
| // Candidate. |
| CHECK_LE(to_replace.message_index(), accounted_for.size()); |
| if (accounted_for[to_replace.message_index()]) { |
| VLOG(3) << "Sender " << i |
| << " died, to_replace is already accounted for"; |
| // If both are accounted for, we are corrupt... |
| CHECK(!accounted_for[scratch_index.message_index()]); |
| |
| // to_replace is already accounted for. This means that we didn't |
| // atomically insert scratch_index into the queue yet. So |
| // invalidate to_replace. |
| sender->to_replace.Invalidate(); |
| |
| // And then mark this sender clean. |
| __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_RELEASE); |
| |
| // And account for scratch_index. |
| accounted_for[scratch_index.message_index()] = true; |
| --num_missing; |
| ++num_accounted_for; |
| } else if (accounted_for[scratch_index.message_index()]) { |
| VLOG(3) << "Sender " << i |
| << " died, scratch_index is already accounted for"; |
| // scratch_index is accounted for. That means we did the insert, |
| // but didn't record it. |
| CHECK(to_replace.valid()); |
| // Finish the transaction. Copy to_replace, then clear it. |
| |
| sender->scratch_index.Store(to_replace); |
| sender->to_replace.Invalidate(); |
| |
| // And then mark this sender clean. |
| __atomic_store_n(&(sender->tid.futex), 0, __ATOMIC_RELEASE); |
| |
| // And account for to_replace. |
| accounted_for[to_replace.message_index()] = true; |
| --num_missing; |
| ++num_accounted_for; |
| } else { |
| VLOG(3) << "Sender " << i << " died, neither is accounted for"; |
| // Ambiguous. There will be an unambiguous one somewhere that we |
| // can do first. |
| } |
| } |
| } |
| // CHECK that we are making progress. |
| CHECK_NE(num_missing, starting_num_missing); |
| } |
| } |
| |
| // Exposes rt_tgsigqueueinfo so we can send the signal *just* to the target |
| // thread. |
| // TODO(Brian): Do directly in assembly for armhf at least for efficiency. |
| int rt_tgsigqueueinfo(pid_t tgid, pid_t tid, int sig, siginfo_t *si) { |
| return syscall(SYS_rt_tgsigqueueinfo, tgid, tid, sig, si); |
| } |
| |
| } // namespace |
| |
| size_t LocklessQueueConfiguration::message_size() const { |
| // Round up the message size so following data is aligned appropriately. |
| return LocklessQueueMemory::AlignmentRoundUp(message_data_size) + |
| sizeof(Message); |
| } |
| |
| size_t LocklessQueueMemorySize(LocklessQueueConfiguration config) { |
| // Round up the message size so following data is aligned appropriately. |
| config.message_data_size = |
| LocklessQueueMemory::AlignmentRoundUp(config.message_data_size); |
| |
| // As we build up the size, confirm that everything is aligned to the |
| // alignment requirements of the type. |
| size_t size = sizeof(LocklessQueueMemory); |
| CHECK_EQ(size % alignof(LocklessQueueMemory), 0u); |
| |
| CHECK_EQ(size % alignof(AtomicIndex), 0u); |
| size += LocklessQueueMemory::SizeOfQueue(config); |
| |
| CHECK_EQ(size % alignof(Message), 0u); |
| size += LocklessQueueMemory::SizeOfMessages(config); |
| |
| CHECK_EQ(size % alignof(Watcher), 0u); |
| size += LocklessQueueMemory::SizeOfWatchers(config); |
| |
| CHECK_EQ(size % alignof(Sender), 0u); |
| size += LocklessQueueMemory::SizeOfSenders(config); |
| |
| return size; |
| } |
| |
| LocklessQueueMemory *InitializeLocklessQueueMemory( |
| LocklessQueueMemory *memory, LocklessQueueConfiguration config) { |
| // Everything should be zero initialized already. So we just need to fill |
| // everything out properly. |
| |
| // Grab the mutex. We don't care if the previous reader died. We are going |
| // to check everything anyways. |
| GrabQueueSetupLockOrDie grab_queue_setup_lock(memory); |
| |
| if (!memory->initialized) { |
| // TODO(austin): Check these for out of bounds. |
| memory->config.num_watchers = config.num_watchers; |
| memory->config.num_senders = config.num_senders; |
| memory->config.queue_size = config.queue_size; |
| memory->config.message_data_size = config.message_data_size; |
| |
| const size_t num_messages = memory->num_messages(); |
| // There need to be at most MaxMessages() messages allocated. |
| CHECK_LE(num_messages, Index::MaxMessages()); |
| |
| for (size_t i = 0; i < num_messages; ++i) { |
| memory->GetMessage(Index(QueueIndex::Zero(memory->queue_size()), i)) |
| ->header.queue_index.Invalidate(); |
| } |
| |
| for (size_t i = 0; i < memory->queue_size(); ++i) { |
| // Make the initial counter be the furthest away number. That means that |
| // index 0 should be 0xffff, 1 should be 0, etc. |
| memory->GetQueue(i)->Store(Index(QueueIndex::Zero(memory->queue_size()) |
| .IncrementBy(i) |
| .DecrementBy(memory->queue_size()), |
| i)); |
| } |
| |
| memory->next_queue_index.Invalidate(); |
| |
| for (size_t i = 0; i < memory->num_senders(); ++i) { |
| ::aos::ipc_lib::Sender *s = memory->GetSender(i); |
| // Nobody else can possibly be touching these because we haven't set |
| // initialized to true yet. |
| s->scratch_index.RelaxedStore(Index(0xffff, i + memory->queue_size())); |
| s->to_replace.RelaxedInvalidate(); |
| } |
| |
| aos_compiler_memory_barrier(); |
| // Signal everything is done. This needs to be done last, so if we die, we |
| // redo initialization. |
| memory->initialized = true; |
| } |
| |
| return memory; |
| } |
| |
| LocklessQueue::LocklessQueue(LocklessQueueMemory *memory, |
| LocklessQueueConfiguration config) |
| : memory_(InitializeLocklessQueueMemory(memory, config)), |
| watcher_copy_(memory_->num_watchers()), |
| pid_(getpid()), |
| uid_(getuid()) {} |
| |
| LocklessQueue::~LocklessQueue() { |
| CHECK_EQ(watcher_index_, -1); |
| |
| GrabQueueSetupLockOrDie grab_queue_setup_lock(memory_); |
| const int num_watchers = memory_->num_watchers(); |
| // Cleanup is cheap. The next user will do it anyways, so no need for us to do |
| // anything right now. |
| |
| // And confirm that nothing is owned by us. |
| for (int i = 0; i < num_watchers; ++i) { |
| CHECK(!death_notification_is_held(&(memory_->GetWatcher(i)->tid))); |
| } |
| } |
| |
| size_t LocklessQueue::QueueSize() const { return memory_->queue_size(); } |
| |
| bool LocklessQueue::RegisterWakeup(int priority) { |
| // TODO(austin): Make sure signal coalescing is turned on. We don't need |
| // duplicates. That will improve performance under high load. |
| |
| // Since everything is self consistent, all we need to do is make sure nobody |
| // else is running. Someone dying will get caught in the generic consistency |
| // check. |
| GrabQueueSetupLockOrDie grab_queue_setup_lock(memory_); |
| const int num_watchers = memory_->num_watchers(); |
| |
| // Now, find the first empty watcher and grab it. |
| CHECK_EQ(watcher_index_, -1); |
| for (int i = 0; i < num_watchers; ++i) { |
| // If we see a slot the kernel has marked as dead, everything we do reusing |
| // it needs to happen-after whatever that process did before dying. |
| auto *const futex = &(memory_->GetWatcher(i)->tid.futex); |
| const uint32_t tid = __atomic_load_n(futex, __ATOMIC_ACQUIRE); |
| if (tid == 0 || (tid & FUTEX_OWNER_DIED)) { |
| watcher_index_ = i; |
| // Relaxed is OK here because we're the only task going to touch it |
| // between here and the write in death_notification_init below (other |
| // recovery is blocked by us holding the setup lock). |
| __atomic_store_n(futex, 0, __ATOMIC_RELAXED); |
| break; |
| } |
| } |
| |
| // Bail if we failed to find an open slot. |
| if (watcher_index_ == -1) { |
| return false; |
| } |
| |
| Watcher *w = memory_->GetWatcher(watcher_index_); |
| |
| w->pid = getpid(); |
| w->priority = priority; |
| |
| // Grabbing a mutex is a compiler and memory barrier, so nothing before will |
| // get rearranged afterwords. |
| death_notification_init(&(w->tid)); |
| return true; |
| } |
| |
| void LocklessQueue::UnregisterWakeup() { |
| // Since everything is self consistent, all we need to do is make sure nobody |
| // else is running. Someone dying will get caught in the generic consistency |
| // check. |
| GrabQueueSetupLockOrDie grab_queue_setup_lock(memory_); |
| |
| // Make sure we are registered. |
| CHECK_NE(watcher_index_, -1); |
| |
| // Make sure we still own the slot we are supposed to. |
| CHECK( |
| death_notification_is_held(&(memory_->GetWatcher(watcher_index_)->tid))); |
| |
| // The act of unlocking invalidates the entry. Invalidate it. |
| death_notification_release(&(memory_->GetWatcher(watcher_index_)->tid)); |
| // And internally forget the slot. |
| watcher_index_ = -1; |
| } |
| |
| int LocklessQueue::Wakeup(const int current_priority) { |
| const size_t num_watchers = memory_->num_watchers(); |
| |
| CHECK_EQ(watcher_copy_.size(), num_watchers); |
| |
| // Grab a copy so it won't change out from underneath us, and we can sort it |
| // nicely in C++. |
| // Do note that there is still a window where the process can die *after* we |
| // read everything. We will still PI boost and send a signal to the thread in |
| // question. There is no way without pidfd's to close this window, and |
| // creating a pidfd is likely not RT. |
| for (size_t i = 0; i < num_watchers; ++i) { |
| Watcher *w = memory_->GetWatcher(i); |
| watcher_copy_[i].tid = __atomic_load_n(&(w->tid.futex), __ATOMIC_RELAXED); |
| // Force the load of the TID to come first. |
| aos_compiler_memory_barrier(); |
| watcher_copy_[i].pid = w->pid.load(std::memory_order_relaxed); |
| watcher_copy_[i].priority = w->priority.load(std::memory_order_relaxed); |
| |
| // Use a priority of -1 to mean an invalid entry to make sorting easier. |
| if (watcher_copy_[i].tid & FUTEX_OWNER_DIED || watcher_copy_[i].tid == 0) { |
| watcher_copy_[i].priority = -1; |
| } else { |
| // Ensure all of this happens after we're done looking at the pid+priority |
| // in shared memory. |
| aos_compiler_memory_barrier(); |
| if (watcher_copy_[i].tid != static_cast<pid_t>(__atomic_load_n( |
| &(w->tid.futex), __ATOMIC_RELAXED))) { |
| // Confirm that the watcher hasn't been re-used and modified while we |
| // read it. If it has, mark it invalid again. |
| watcher_copy_[i].priority = -1; |
| watcher_copy_[i].tid = 0; |
| } |
| } |
| } |
| |
| // Now sort. |
| ::std::sort(watcher_copy_.begin(), watcher_copy_.end(), |
| [](const WatcherCopy &a, const WatcherCopy &b) { |
| return a.priority > b.priority; |
| }); |
| |
| int count = 0; |
| if (watcher_copy_[0].priority != -1) { |
| const int max_priority = |
| ::std::max(current_priority, watcher_copy_[0].priority); |
| // Boost if we are RT and there is a higher priority sender out there. |
| // Otherwise we might run into priority inversions. |
| if (max_priority > current_priority && current_priority > 0) { |
| SetCurrentThreadRealtimePriority(max_priority); |
| } |
| |
| // Build up the siginfo to send. |
| siginfo_t uinfo; |
| memset(&uinfo, 0, sizeof(uinfo)); |
| |
| uinfo.si_code = SI_QUEUE; |
| uinfo.si_pid = pid_; |
| uinfo.si_uid = uid_; |
| uinfo.si_value.sival_int = 0; |
| |
| for (const WatcherCopy &watcher_copy : watcher_copy_) { |
| // The first -1 priority means we are at the end of the valid list. |
| if (watcher_copy.priority == -1) { |
| break; |
| } |
| |
| // Send the signal. Target just the thread that sent it so that we can |
| // support multiple watchers in a process (when someone creates multiple |
| // event loops in different threads). |
| rt_tgsigqueueinfo(watcher_copy.pid, watcher_copy.tid, kWakeupSignal, |
| &uinfo); |
| |
| ++count; |
| } |
| |
| // Drop back down if we were boosted. |
| if (max_priority > current_priority && current_priority > 0) { |
| SetCurrentThreadRealtimePriority(current_priority); |
| } |
| } |
| |
| return count; |
| } |
| |
| LocklessQueue::Sender::Sender(LocklessQueueMemory *memory) : memory_(memory) { |
| GrabQueueSetupLockOrDie grab_queue_setup_lock(memory_); |
| |
| // Since we already have the lock, go ahead and try cleaning up. |
| Cleanup(memory_, grab_queue_setup_lock); |
| |
| const int num_senders = memory_->num_senders(); |
| |
| for (int i = 0; i < num_senders; ++i) { |
| ::aos::ipc_lib::Sender *s = memory->GetSender(i); |
| // This doesn't need synchronization because we're the only process doing |
| // initialization right now, and nobody else will be touching senders which |
| // we're interested in. |
| const uint32_t tid = __atomic_load_n(&(s->tid.futex), __ATOMIC_RELAXED); |
| if (tid == 0) { |
| sender_index_ = i; |
| break; |
| } |
| } |
| |
| if (sender_index_ == -1) { |
| LOG(FATAL) << "Too many senders"; |
| } |
| |
| ::aos::ipc_lib::Sender *s = memory_->GetSender(sender_index_); |
| |
| // Indicate that we are now alive by taking over the slot. If the previous |
| // owner died, we still want to do this. |
| death_notification_init(&(s->tid)); |
| } |
| |
| LocklessQueue::Sender::~Sender() { |
| if (memory_ != nullptr) { |
| death_notification_release(&(memory_->GetSender(sender_index_)->tid)); |
| } |
| } |
| |
| LocklessQueue::Sender LocklessQueue::MakeSender() { |
| return LocklessQueue::Sender(memory_); |
| } |
| |
| QueueIndex ZeroOrValid(QueueIndex index) { |
| if (!index.valid()) { |
| return index.Clear(); |
| } |
| return index; |
| } |
| |
| size_t LocklessQueue::Sender::size() { return memory_->message_data_size(); } |
| |
| void *LocklessQueue::Sender::Data() { |
| ::aos::ipc_lib::Sender *sender = memory_->GetSender(sender_index_); |
| Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| Message *message = memory_->GetMessage(scratch_index); |
| message->header.queue_index.Invalidate(); |
| |
| return &message->data[0]; |
| } |
| |
| void LocklessQueue::Sender::Send( |
| const char *data, size_t length, |
| aos::monotonic_clock::time_point monotonic_remote_time, |
| aos::realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, |
| aos::monotonic_clock::time_point *monotonic_sent_time, |
| aos::realtime_clock::time_point *realtime_sent_time, |
| uint32_t *queue_index) { |
| CHECK_LE(length, size()); |
| // Flatbuffers write from the back of the buffer to the front. If we are |
| // going to write an explicit chunk of memory into the buffer, we need to |
| // adhere to this convention and place it at the end. |
| memcpy((reinterpret_cast<char *>(Data()) + size() - length), data, length); |
| Send(length, monotonic_remote_time, realtime_remote_time, remote_queue_index, |
| monotonic_sent_time, realtime_sent_time, queue_index); |
| } |
| |
| void LocklessQueue::Sender::Send( |
| size_t length, aos::monotonic_clock::time_point monotonic_remote_time, |
| aos::realtime_clock::time_point realtime_remote_time, |
| uint32_t remote_queue_index, |
| aos::monotonic_clock::time_point *monotonic_sent_time, |
| aos::realtime_clock::time_point *realtime_sent_time, |
| uint32_t *queue_index) { |
| const size_t queue_size = memory_->queue_size(); |
| CHECK_LE(length, size()); |
| |
| ::aos::ipc_lib::Sender *const sender = memory_->GetSender(sender_index_); |
| // We can do a relaxed load on our sender because we're the only person |
| // modifying it right now. |
| const Index scratch_index = sender->scratch_index.RelaxedLoad(); |
| Message *const message = memory_->GetMessage(scratch_index); |
| |
| message->header.length = length; |
| // Pass these through. Any alternative behavior can be implemented out a |
| // layer. |
| message->header.remote_queue_index = remote_queue_index; |
| message->header.monotonic_remote_time = monotonic_remote_time; |
| message->header.realtime_remote_time = realtime_remote_time; |
| |
| while (true) { |
| const QueueIndex actual_next_queue_index = |
| memory_->next_queue_index.Load(queue_size); |
| const QueueIndex next_queue_index = ZeroOrValid(actual_next_queue_index); |
| |
| const QueueIndex incremented_queue_index = next_queue_index.Increment(); |
| |
| // This needs to synchronize with whoever the previous writer at this |
| // location was. |
| const Index to_replace = memory_->LoadIndex(next_queue_index); |
| |
| const QueueIndex decremented_queue_index = |
| next_queue_index.DecrementBy(queue_size); |
| |
| // See if we got beat. If we did, try to atomically update |
| // next_queue_index in case the previous writer failed and retry. |
| if (!to_replace.IsPlausible(decremented_queue_index)) { |
| // We don't care about the result. It will either succeed, or we got |
| // beat in fixing it and just need to give up and try again. If we got |
| // beat multiple times, the only way progress can be made is if the queue |
| // is updated as well. This means that if we retry reading |
| // next_queue_index, we will be at most off by one and can retry. |
| // |
| // Both require no further action from us. |
| // |
| // TODO(austin): If we are having fairness issues under contention, we |
| // could have a mode bit in next_queue_index, and could use a lock or some |
| // other form of PI boosting to let the higher priority task win. |
| memory_->next_queue_index.CompareAndExchangeStrong( |
| actual_next_queue_index, incremented_queue_index); |
| |
| VLOG(3) << "We were beat. Try again. Was " << std::hex |
| << to_replace.get() << ", is " << decremented_queue_index.index(); |
| continue; |
| } |
| |
| // Confirm that the message is what it should be. |
| { |
| const QueueIndex previous_index = |
| memory_->GetMessage(to_replace)->header.queue_index.Load(queue_size); |
| if (previous_index != decremented_queue_index && previous_index.valid()) { |
| // Retry. |
| VLOG(3) << "Something fishy happened, queue index doesn't match. " |
| "Retrying. Previous index was " |
| << std::hex << previous_index.index() << ", should be " |
| << decremented_queue_index.index(); |
| continue; |
| } |
| } |
| |
| message->header.monotonic_sent_time = ::aos::monotonic_clock::now(); |
| message->header.realtime_sent_time = ::aos::realtime_clock::now(); |
| if (monotonic_sent_time != nullptr) { |
| *monotonic_sent_time = message->header.monotonic_sent_time; |
| } |
| if (realtime_sent_time != nullptr) { |
| *realtime_sent_time = message->header.realtime_sent_time; |
| } |
| if (queue_index != nullptr) { |
| *queue_index = next_queue_index.index(); |
| } |
| |
| // Before we are fully done filling out the message, update the Sender state |
| // with the new index to write. This re-uses the barrier for the |
| // queue_index store. |
| const Index index_to_write(next_queue_index, scratch_index.message_index()); |
| |
| aos_compiler_memory_barrier(); |
| // We're the only person who cares about our scratch index, besides somebody |
| // cleaning up after us. |
| sender->scratch_index.RelaxedStore(index_to_write); |
| aos_compiler_memory_barrier(); |
| |
| message->header.queue_index.Store(next_queue_index); |
| |
| aos_compiler_memory_barrier(); |
| // The message is now filled out, and we have a confirmed slot to store |
| // into. |
| // |
| // Start by writing down what we are going to pull out of the queue. This |
| // was Invalid before now. Only person who will read this is whoever cleans |
| // up after us, so no synchronization necessary. |
| sender->to_replace.RelaxedStore(to_replace); |
| aos_compiler_memory_barrier(); |
| |
| // Then exchange the next index into the queue. |
| if (!memory_->GetQueue(next_queue_index.Wrapped()) |
| ->CompareAndExchangeStrong(to_replace, index_to_write)) { |
| // Aw, didn't succeed. Retry. |
| sender->to_replace.RelaxedInvalidate(); |
| aos_compiler_memory_barrier(); |
| VLOG(3) << "Failed to wrap into queue"; |
| continue; |
| } |
| |
| // Then update next_queue_index to save the next user some computation time. |
| memory_->next_queue_index.CompareAndExchangeStrong(actual_next_queue_index, |
| incremented_queue_index); |
| |
| aos_compiler_memory_barrier(); |
| // Now update the scratch space and record that we succeeded. |
| sender->scratch_index.Store(to_replace); |
| aos_compiler_memory_barrier(); |
| // And then record that we succeeded, but definitely after the above store. |
| sender->to_replace.RelaxedInvalidate(); |
| break; |
| } |
| } |
| |
| LocklessQueue::ReadResult LocklessQueue::Read( |
| uint32_t uint32_queue_index, |
| ::aos::monotonic_clock::time_point *monotonic_sent_time, |
| ::aos::realtime_clock::time_point *realtime_sent_time, |
| ::aos::monotonic_clock::time_point *monotonic_remote_time, |
| ::aos::realtime_clock::time_point *realtime_remote_time, |
| uint32_t *remote_queue_index, size_t *length, char *data) { |
| const size_t queue_size = memory_->queue_size(); |
| |
| // Build up the QueueIndex. |
| const QueueIndex queue_index = |
| QueueIndex::Zero(queue_size).IncrementBy(uint32_queue_index); |
| |
| // Read the message stored at the requested location. |
| Index mi = memory_->LoadIndex(queue_index); |
| Message *m = memory_->GetMessage(mi); |
| |
| while (true) { |
| // We need to confirm that the data doesn't change while we are reading it. |
| // Do that by first confirming that the message points to the queue index we |
| // want. |
| const QueueIndex starting_queue_index = |
| m->header.queue_index.Load(queue_size); |
| if (starting_queue_index != queue_index) { |
| // If we found a message that is exactly 1 loop old, we just wrapped. |
| if (starting_queue_index == queue_index.DecrementBy(queue_size)) { |
| VLOG(3) << "Matches: " << std::hex << starting_queue_index.index() |
| << ", " << queue_index.DecrementBy(queue_size).index(); |
| return ReadResult::NOTHING_NEW; |
| } else { |
| // Someone has re-used this message between when we pulled it out of the |
| // queue and when we grabbed its index. It is pretty hard to deduce |
| // what happened. Just try again. |
| Message *const new_m = memory_->GetMessage(queue_index); |
| if (m != new_m) { |
| m = new_m; |
| VLOG(3) << "Retrying, m doesn't match"; |
| continue; |
| } |
| |
| // We have confirmed that message still points to the same message. This |
| // means that the message didn't get swapped out from under us, so |
| // starting_queue_index is correct. |
| // |
| // Either we got too far behind (signaled by this being a valid |
| // message), or this is one of the initial messages which are invalid. |
| if (starting_queue_index.valid()) { |
| VLOG(3) << "Too old. Tried for " << std::hex << queue_index.index() |
| << ", got " << starting_queue_index.index() << ", behind by " |
| << std::dec |
| << (starting_queue_index.index() - queue_index.index()); |
| return ReadResult::TOO_OLD; |
| } |
| |
| VLOG(3) << "Initial"; |
| |
| // There isn't a valid message at this location. |
| // |
| // If someone asks for one of the messages within the first go around, |
| // then they need to wait. They got ahead. Otherwise, they are |
| // asking for something crazy, like something before the beginning of |
| // the queue. Tell them that they are behind. |
| if (uint32_queue_index < memory_->queue_size()) { |
| VLOG(3) << "Near zero, " << std::hex << uint32_queue_index; |
| return ReadResult::NOTHING_NEW; |
| } else { |
| VLOG(3) << "Not near zero, " << std::hex << uint32_queue_index; |
| return ReadResult::TOO_OLD; |
| } |
| } |
| } |
| VLOG(3) << "Eq: " << std::hex << starting_queue_index.index() << ", " |
| << queue_index.index(); |
| break; |
| } |
| |
| // Then read the data out. Copy it all out to be deterministic and so we can |
| // make length be from either end. |
| *monotonic_sent_time = m->header.monotonic_sent_time; |
| *realtime_sent_time = m->header.realtime_sent_time; |
| if (m->header.remote_queue_index == 0xffffffffu) { |
| *remote_queue_index = queue_index.index(); |
| } else { |
| *remote_queue_index = m->header.remote_queue_index; |
| } |
| *monotonic_remote_time = m->header.monotonic_remote_time; |
| *realtime_remote_time = m->header.realtime_remote_time; |
| memcpy(data, &m->data[0], message_data_size()); |
| *length = m->header.length; |
| |
| // And finally, confirm that the message *still* points to the queue index we |
| // want. This means it didn't change out from under us. |
| // If something changed out from under us, we were reading it much too late in |
| // it's lifetime. |
| aos_compiler_memory_barrier(); |
| const QueueIndex final_queue_index = m->header.queue_index.Load(queue_size); |
| if (final_queue_index != queue_index) { |
| VLOG(3) << "Changed out from under us. Reading " << std::hex |
| << queue_index.index() << ", finished with " |
| << final_queue_index.index() << ", delta: " << std::dec |
| << (final_queue_index.index() - queue_index.index()); |
| return ReadResult::OVERWROTE; |
| } |
| |
| return ReadResult::GOOD; |
| } |
| |
| size_t LocklessQueue::queue_size() const { return memory_->queue_size(); } |
| size_t LocklessQueue::message_data_size() const { |
| return memory_->message_data_size(); |
| } |
| |
| QueueIndex LocklessQueue::LatestQueueIndex() { |
| const size_t queue_size = memory_->queue_size(); |
| |
| // There is only one interesting case. We need to know if the queue is empty. |
| // That is done with a sentinel value. At worst, this will be off by one. |
| const QueueIndex next_queue_index = |
| memory_->next_queue_index.Load(queue_size); |
| if (next_queue_index.valid()) { |
| const QueueIndex current_queue_index = next_queue_index.DecrementBy(1u); |
| return current_queue_index; |
| } else { |
| return empty_queue_index(); |
| } |
| } |
| |
| namespace { |
| |
| // Prints out the mutex state. Not safe to use while the mutex is being |
| // changed. |
| ::std::string PrintMutex(aos_mutex *mutex) { |
| ::std::stringstream s; |
| s << "aos_mutex(" << ::std::hex << mutex->futex; |
| |
| if (mutex->futex != 0) { |
| s << ":"; |
| if (mutex->futex & FUTEX_OWNER_DIED) { |
| s << "FUTEX_OWNER_DIED|"; |
| } |
| s << "tid=" << (mutex->futex & FUTEX_TID_MASK); |
| } |
| |
| s << ")"; |
| return s.str(); |
| } |
| |
| } // namespace |
| |
| void PrintLocklessQueueMemory(LocklessQueueMemory *memory) { |
| const size_t queue_size = memory->queue_size(); |
| ::std::cout << "LocklessQueueMemory (" << memory << ") {" << ::std::endl; |
| ::std::cout << " aos_mutex queue_setup_lock = " |
| << PrintMutex(&memory->queue_setup_lock) << ::std::endl; |
| ::std::cout << " bool initialized = " << memory->initialized << ::std::endl; |
| ::std::cout << " config {" << ::std::endl; |
| ::std::cout << " size_t num_watchers = " << memory->config.num_watchers |
| << ::std::endl; |
| ::std::cout << " size_t num_senders = " << memory->config.num_senders |
| << ::std::endl; |
| ::std::cout << " size_t queue_size = " << memory->config.queue_size |
| << ::std::endl; |
| ::std::cout << " size_t message_data_size = " |
| << memory->config.message_data_size << ::std::endl; |
| |
| ::std::cout << " AtomicQueueIndex next_queue_index = " |
| << memory->next_queue_index.Load(queue_size).DebugString() |
| << ::std::endl; |
| |
| ::std::cout << " }" << ::std::endl; |
| ::std::cout << " AtomicIndex queue[" << queue_size << "] {" << ::std::endl; |
| for (size_t i = 0; i < queue_size; ++i) { |
| ::std::cout << " [" << i << "] -> " |
| << memory->GetQueue(i)->Load().DebugString() << ::std::endl; |
| } |
| ::std::cout << " }" << ::std::endl; |
| ::std::cout << " Message messages[" << memory->num_messages() << "] {" |
| << ::std::endl; |
| for (size_t i = 0; i < memory->num_messages(); ++i) { |
| Message *m = memory->GetMessage(Index(i, i)); |
| ::std::cout << " [" << i << "] -> Message {" << ::std::endl; |
| ::std::cout << " Header {" << ::std::endl; |
| ::std::cout << " AtomicQueueIndex queue_index = " |
| << m->header.queue_index.Load(queue_size).DebugString() |
| << ::std::endl; |
| ::std::cout << " size_t length = " << m->header.length |
| << ::std::endl; |
| ::std::cout << " }" << ::std::endl; |
| ::std::cout << " data: {"; |
| |
| for (size_t j = 0; j < m->header.length; ++j) { |
| char data = m->data[j]; |
| if (j != 0) { |
| ::std::cout << " "; |
| } |
| if (::std::isprint(data)) { |
| ::std::cout << ::std::setfill(' ') << ::std::setw(2) << ::std::hex |
| << data; |
| } else { |
| ::std::cout << "0x" << ::std::setfill('0') << ::std::setw(2) |
| << ::std::hex << (static_cast<unsigned>(data) & 0xff); |
| } |
| } |
| ::std::cout << ::std::setfill(' ') << ::std::dec << "}" << ::std::endl; |
| ::std::cout << " }," << ::std::endl; |
| } |
| ::std::cout << " }" << ::std::endl; |
| |
| ::std::cout << " Sender senders[" << memory->num_senders() << "] {" |
| << ::std::endl; |
| for (size_t i = 0; i < memory->num_senders(); ++i) { |
| Sender *s = memory->GetSender(i); |
| ::std::cout << " [" << i << "] -> Sender {" << ::std::endl; |
| ::std::cout << " aos_mutex tid = " << PrintMutex(&s->tid) |
| << ::std::endl; |
| ::std::cout << " AtomicIndex scratch_index = " |
| << s->scratch_index.Load().DebugString() << ::std::endl; |
| ::std::cout << " AtomicIndex to_replace = " |
| << s->to_replace.Load().DebugString() << ::std::endl; |
| ::std::cout << " }" << ::std::endl; |
| } |
| ::std::cout << " }" << ::std::endl; |
| |
| ::std::cout << " Watcher watchers[" << memory->num_watchers() << "] {" |
| << ::std::endl; |
| for (size_t i = 0; i < memory->num_watchers(); ++i) { |
| Watcher *w = memory->GetWatcher(i); |
| ::std::cout << " [" << i << "] -> Watcher {" << ::std::endl; |
| ::std::cout << " aos_mutex tid = " << PrintMutex(&w->tid) |
| << ::std::endl; |
| ::std::cout << " pid_t pid = " << w->pid << ::std::endl; |
| ::std::cout << " int priority = " << w->priority << ::std::endl; |
| ::std::cout << " }" << ::std::endl; |
| } |
| ::std::cout << " }" << ::std::endl; |
| |
| ::std::cout << "}" << ::std::endl; |
| } |
| |
| } // namespace ipc_lib |
| } // namespace aos |