blob: 4a192090749771cd1b68f6de4997ad9357a71485 [file] [log] [blame]
#ifndef AOS_EVENTS_LOGGING_LOGFILE_UTILS_H_
#define AOS_EVENTS_LOGGING_LOGFILE_UTILS_H_
#include <sys/uio.h>
#include <chrono>
#include <deque>
#include <limits>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/container/btree_set.h"
#include "absl/types/span.h"
#include "aos/containers/resizeable_buffer.h"
#include "aos/events/event_loop.h"
#include "aos/events/logging/buffer_encoder.h"
#include "aos/events/logging/logfile_sorting.h"
#include "aos/events/logging/logger_generated.h"
#include "aos/flatbuffers.h"
#include "flatbuffers/flatbuffers.h"
namespace aos::logger {
enum class LogType : uint8_t {
// The message originated on this node and should be logged here.
kLogMessage,
// The message originated on another node, but only the delivery times are
// logged here.
kLogDeliveryTimeOnly,
// The message originated on another node. Log it and the delivery times
// together. The message_gateway is responsible for logging any messages
// which didn't get delivered.
kLogMessageAndDeliveryTime,
// The message originated on the other node and should be logged on this node.
kLogRemoteMessage
};
// This class manages efficiently writing a sequence of detached buffers to a
// file. It encodes them, queues them up, and batches the write operation.
class DetachedBufferWriter {
public:
// Marker struct for one of our constructor overloads.
struct already_out_of_space_t {};
DetachedBufferWriter(std::string_view filename,
std::unique_ptr<DetachedBufferEncoder> encoder);
// Creates a dummy instance which won't even open a file. It will act as if
// opening the file ran out of space immediately.
DetachedBufferWriter(already_out_of_space_t) : ran_out_of_space_(true) {}
DetachedBufferWriter(DetachedBufferWriter &&other);
DetachedBufferWriter(const DetachedBufferWriter &) = delete;
~DetachedBufferWriter();
DetachedBufferWriter &operator=(DetachedBufferWriter &&other);
DetachedBufferWriter &operator=(const DetachedBufferWriter &) = delete;
std::string_view filename() const { return filename_; }
// This will be true until Close() is called, unless the file couldn't be
// created due to running out of space.
bool is_open() const { return fd_ != -1; }
// Queues up a finished FlatBufferBuilder to be encoded and written.
//
// Triggers a flush if there's enough data queued up.
//
// Steals the detached buffer from it.
void QueueSizedFlatbuffer(flatbuffers::FlatBufferBuilder *fbb) {
QueueSizedFlatbuffer(fbb->Release());
}
// May steal the backing storage of buffer, or may leave it alone.
void QueueSizedFlatbuffer(flatbuffers::DetachedBuffer &&buffer) {
if (ran_out_of_space_) {
return;
}
encoder_->Encode(std::move(buffer));
FlushAtThreshold();
}
// Queues up data in span. May copy or may write it to disk immediately.
void QueueSpan(absl::Span<const uint8_t> span);
// Indicates we got ENOSPC when trying to write. After this returns true, no
// further data is written.
bool ran_out_of_space() const { return ran_out_of_space_; }
// To avoid silently failing to write logfiles, you must call this before
// destruction if ran_out_of_space() is true and the situation has been
// handled.
void acknowledge_out_of_space() {
CHECK(ran_out_of_space_);
acknowledge_ran_out_of_space_ = true;
}
// Fully flushes and closes the underlying file now. No additional data may be
// enqueued after calling this.
//
// This will be performed in the destructor automatically.
//
// Note that this may set ran_out_of_space().
void Close();
// Returns the total number of bytes written and currently queued.
size_t total_bytes() const { return encoder_->total_bytes(); }
// The maximum time for a single write call, or 0 if none have been performed.
std::chrono::nanoseconds max_write_time() const { return max_write_time_; }
// The number of bytes in the longest write call, or -1 if none have been
// performed.
int max_write_time_bytes() const { return max_write_time_bytes_; }
// The number of buffers in the longest write call, or -1 if none have been
// performed.
int max_write_time_messages() const { return max_write_time_messages_; }
// The total time spent in write calls.
std::chrono::nanoseconds total_write_time() const {
return total_write_time_;
}
// The total number of writes which have been performed.
int total_write_count() const { return total_write_count_; }
// The total number of messages which have been written.
int total_write_messages() const { return total_write_messages_; }
// The total number of bytes which have been written.
int total_write_bytes() const { return total_write_bytes_; }
void ResetStatistics() {
max_write_time_ = std::chrono::nanoseconds::zero();
max_write_time_bytes_ = -1;
max_write_time_messages_ = -1;
total_write_time_ = std::chrono::nanoseconds::zero();
total_write_count_ = 0;
total_write_messages_ = 0;
total_write_bytes_ = 0;
}
private:
// Performs a single writev call with as much of the data we have queued up as
// possible.
//
// This will normally take all of the data we have queued up, unless an
// encoder has spit out a big enough chunk all at once that we can't manage
// all of it.
void Flush();
// write_return is what write(2) or writev(2) returned. write_size is the
// number of bytes we expected it to write.
void HandleWriteReturn(ssize_t write_return, size_t write_size);
void UpdateStatsForWrite(aos::monotonic_clock::duration duration,
ssize_t written, int iovec_size);
// Flushes data if we've reached the threshold to do that as part of normal
// operation.
void FlushAtThreshold();
std::string filename_;
std::unique_ptr<DetachedBufferEncoder> encoder_;
int fd_ = -1;
bool ran_out_of_space_ = false;
bool acknowledge_ran_out_of_space_ = false;
// List of iovecs to use with writev. This is a member variable to avoid
// churn.
std::vector<struct iovec> iovec_;
std::chrono::nanoseconds max_write_time_ = std::chrono::nanoseconds::zero();
int max_write_time_bytes_ = -1;
int max_write_time_messages_ = -1;
std::chrono::nanoseconds total_write_time_ = std::chrono::nanoseconds::zero();
int total_write_count_ = 0;
int total_write_messages_ = 0;
int total_write_bytes_ = 0;
};
// Packes a message pointed to by the context into a MessageHeader.
flatbuffers::Offset<MessageHeader> PackMessage(
flatbuffers::FlatBufferBuilder *fbb, const Context &context,
int channel_index, LogType log_type);
std::optional<SizePrefixedFlatbufferVector<LogFileHeader>> ReadHeader(
std::string_view filename);
std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadNthMessage(
std::string_view filename, size_t n);
// Class to read chunks out of a log file.
class SpanReader {
public:
SpanReader(std::string_view filename);
std::string_view filename() const { return filename_; }
// Returns a span with the data for a message from the log file, excluding
// the size.
absl::Span<const uint8_t> ReadMessage();
private:
// TODO(austin): Optimization:
// Allocate the 256k blocks like we do today. But, refcount them with
// shared_ptr pointed to by the messageheader that is returned. This avoids
// the copy. Need to do more benchmarking.
// And (Brian): Consider just mmapping the file and handing out refcounted
// pointers into that too.
// Reads a chunk of data into data_. Returns false if no data was read.
bool ReadBlock();
std::string filename_;
// File reader and data decoder.
std::unique_ptr<DataDecoder> decoder_;
// Vector to read into.
ResizeableBuffer data_;
// Amount of data consumed already in data_.
size_t consumed_data_ = 0;
};
// Class which handles reading the header and messages from the log file. This
// handles any per-file state left before merging below.
class MessageReader {
public:
MessageReader(std::string_view filename);
std::string_view filename() const { return span_reader_.filename(); }
// Returns the header from the log file.
const LogFileHeader *log_file_header() const {
return &raw_log_file_header_.message();
}
// Returns the raw data of the header from the log file.
const SizePrefixedFlatbufferVector<LogFileHeader> &raw_log_file_header()
const {
return raw_log_file_header_;
}
// Returns the minimum maount of data needed to queue up for sorting before
// ware guarenteed to not see data out of order.
std::chrono::nanoseconds max_out_of_order_duration() const {
return max_out_of_order_duration_;
}
// Returns the newest timestamp read out of the log file.
monotonic_clock::time_point newest_timestamp() const {
return newest_timestamp_;
}
// Returns the next message if there is one.
std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadMessage();
// The time at which we need to read another chunk from the logfile.
monotonic_clock::time_point queue_data_time() const {
return newest_timestamp() - max_out_of_order_duration();
}
private:
// Log chunk reader.
SpanReader span_reader_;
// Vector holding the raw data for the log file header.
SizePrefixedFlatbufferVector<LogFileHeader> raw_log_file_header_;
// Minimum amount of data to queue up for sorting before we are guarenteed
// to not see data out of order.
std::chrono::nanoseconds max_out_of_order_duration_;
// Timestamp of the newest message in a channel queue.
monotonic_clock::time_point newest_timestamp_ = monotonic_clock::min_time;
};
// A class to seamlessly read messages from a list of part files.
class PartsMessageReader {
public:
PartsMessageReader(LogParts log_parts);
std::string_view filename() const { return message_reader_.filename(); }
// Returns the LogParts that holds the filenames we are reading.
const LogParts &parts() const { return parts_; }
const LogFileHeader *log_file_header() const {
return message_reader_.log_file_header();
}
// Returns the minimum amount of data needed to queue up for sorting before
// we are guarenteed to not see data out of order.
std::chrono::nanoseconds max_out_of_order_duration() const {
return message_reader_.max_out_of_order_duration();
}
// Returns the newest timestamp read out of the log file.
monotonic_clock::time_point newest_timestamp() const {
return newest_timestamp_;
}
// Returns the next message if there is one, or nullopt if we have reached the
// end of all the files.
// Note: reading the next message may change the max_out_of_order_duration().
std::optional<SizePrefixedFlatbufferVector<MessageHeader>> ReadMessage();
private:
// Opens the next log and updates message_reader_. Sets done_ if there is
// nothing more to do.
void NextLog();
const LogParts parts_;
size_t next_part_index_ = 1u;
bool done_ = false;
MessageReader message_reader_;
monotonic_clock::time_point newest_timestamp_ = monotonic_clock::min_time;
};
// Struct to hold a message as it gets sorted on a single node.
struct Message {
// The channel.
uint32_t channel_index = 0xffffffff;
// The local queue index.
uint32_t queue_index = 0xffffffff;
// The local timestamp on the monotonic clock.
monotonic_clock::time_point timestamp = monotonic_clock::min_time;
// The data (either a timestamp header, or a data header).
SizePrefixedFlatbufferVector<MessageHeader> data;
bool operator<(const Message &m2) const;
bool operator>=(const Message &m2) const;
bool operator==(const Message &m2) const;
};
std::ostream &operator<<(std::ostream &os, const Message &m);
// Structure to hold a full message and all the timestamps, which may or may not
// have been sent from a remote node. The remote_queue_index will be invalid if
// this message is from the point of view of the node which sent it.
struct TimestampedMessage {
uint32_t channel_index = 0xffffffff;
uint32_t queue_index = 0xffffffff;
monotonic_clock::time_point monotonic_event_time = monotonic_clock::min_time;
realtime_clock::time_point realtime_event_time = realtime_clock::min_time;
uint32_t remote_queue_index = 0xffffffff;
monotonic_clock::time_point monotonic_remote_time = monotonic_clock::min_time;
realtime_clock::time_point realtime_remote_time = realtime_clock::min_time;
SizePrefixedFlatbufferVector<MessageHeader> data;
};
std::ostream &operator<<(std::ostream &os, const TimestampedMessage &m);
// Class to sort the resulting messages from a PartsMessageReader.
class LogPartsSorter {
public:
LogPartsSorter(LogParts log_parts);
// Returns the current log file header.
// TODO(austin): Is this the header we want to report? Do we want a better
// start time?
// TODO(austin): Report a start time from the LogParts. Figure out how that
// all works.
const LogFileHeader *log_file_header() const {
return parts_message_reader_.log_file_header();
}
monotonic_clock::time_point monotonic_start_time() const {
return parts_message_reader_.parts().monotonic_start_time;
}
realtime_clock::time_point realtime_start_time() const {
return parts_message_reader_.parts().realtime_start_time;
}
// The time this data is sorted until.
monotonic_clock::time_point sorted_until() const { return sorted_until_; }
// Returns the next sorted message from the log file. It is safe to call
// std::move() on the result to move the data flatbuffer from it.
Message *Front();
// Pops the front message. This should only be called after a call to
// Front().
void PopFront();
// Returns a debug string representing the contents of this sorter.
std::string DebugString() const;
private:
// Log parts reader we are wrapping.
PartsMessageReader parts_message_reader_;
// Cache of the time we are sorted until.
aos::monotonic_clock::time_point sorted_until_ = monotonic_clock::min_time;
// Set used for efficient sorting of messages. We can benchmark and evaluate
// other data structures if this proves to be the bottleneck.
absl::btree_set<Message> messages_;
};
// Class to run merge sort on the messages from multiple LogPartsSorter
// instances.
class NodeMerger {
public:
NodeMerger(std::vector<LogParts> parts);
// Node index in the configuration of this node.
int node() const { return node_; }
// The log file header for one of the log files.
const LogFileHeader *log_file_header() const {
CHECK(!parts_sorters_.empty());
return parts_sorters_[0].log_file_header();
}
monotonic_clock::time_point monotonic_start_time() const {
return monotonic_start_time_;
}
realtime_clock::time_point realtime_start_time() const {
return realtime_start_time_;
}
// The time this data is sorted until.
monotonic_clock::time_point sorted_until() const { return sorted_until_; }
// Returns the next sorted message from the set of log files. It is safe to
// call std::move() on the result to move the data flatbuffer from it.
Message *Front();
// Pops the front message. This should only be called after a call to
// Front().
void PopFront();
private:
// Unsorted list of all parts sorters.
std::vector<LogPartsSorter> parts_sorters_;
// Pointer to the parts sorter holding the current Front message if one
// exists, or nullptr if a new one needs to be found.
LogPartsSorter *current_ = nullptr;
// Cached sorted_until value.
aos::monotonic_clock::time_point sorted_until_ = monotonic_clock::min_time;
// Cached node.
int node_;
realtime_clock::time_point realtime_start_time_ = realtime_clock::max_time;
monotonic_clock::time_point monotonic_start_time_ = monotonic_clock::max_time;
};
// Class to match timestamps with the corresponding data from other nodes.
class TimestampMapper {
public:
TimestampMapper(std::vector<LogParts> file);
// Copying and moving will mess up the internal raw pointers. Just don't do
// it.
TimestampMapper(TimestampMapper const &) = delete;
TimestampMapper(TimestampMapper &&) = delete;
void operator=(TimestampMapper const &) = delete;
void operator=(TimestampMapper &&) = delete;
// TODO(austin): It would be super helpful to provide a way to queue up to
// time X without matching timestamps, and to then be able to pull the
// timestamps out of this queue. This lets us bootstrap time estimation
// without exploding memory usage worst case.
// Returns a log file header for this node.
const LogFileHeader *log_file_header() const {
return node_merger_.log_file_header();
}
// Returns which node this is sorting for.
size_t node() const { return node_; }
// The start time of this log.
monotonic_clock::time_point monotonic_start_time() const {
return node_merger_.monotonic_start_time();
}
realtime_clock::time_point realtime_start_time() const {
return node_merger_.realtime_start_time();
}
// Uses timestamp_mapper as the peer for its node. Only one mapper may be set
// for each node. Peers are used to look up the data for timestamps on this
// node.
void AddPeer(TimestampMapper *timestamp_mapper);
// Time that we are sorted until internally.
monotonic_clock::time_point sorted_until() const {
return node_merger_.sorted_until();
}
// Returns the next message for this node.
TimestampedMessage *Front();
// Pops the next message. Front must be called first.
void PopFront();
// Returns debug information about this node.
std::string DebugString() const;
private:
// The state for a remote node. This holds the data that needs to be matched
// with the remote node's timestamps.
struct NodeData {
// True if we should save data here. This should be true if any of the
// bools in delivered below are true.
bool any_delivered = false;
// Peer pointer. This node is only to be considered if a peer is set.
TimestampMapper *peer = nullptr;
struct ChannelData {
// Deque per channel. This contains the data from the outside
// TimestampMapper node which is relevant for the node this NodeData
// points to.
std::deque<Message> messages;
// Bool tracking per channel if a message is delivered to the node this
// NodeData represents.
bool delivered = false;
};
// Vector with per channel data.
std::vector<ChannelData> channels;
};
// Returns (and forgets about) the data for the provided timestamp message
// showing when it was delivered to this node.
Message MatchingMessageFor(const Message &message);
// Queues up a single message into our message queue, and any nodes that this
// message is delivered to. Returns true if one was available, false
// otherwise.
bool Queue();
// Queues up data until we have at least one message >= to time t.
// Useful for triggering a remote node to read enough data to have the
// timestamp you care about available.
void QueueUntil(monotonic_clock::time_point t);
// Fills message_ with the contents of m.
void FillMessage(Message *m);
// The node merger to source messages from.
NodeMerger node_merger_;
// Our node.
const size_t node_;
// The buffer of messages for this node. These are not matched with any
// remote data.
std::deque<Message> messages_;
// The node index for the source node for each channel.
std::vector<size_t> source_node_;
// Vector per node. Not all nodes will have anything.
std::vector<NodeData> nodes_data_;
// Latest message to return.
TimestampedMessage message_;
// Tracks if the first message points to message_, nullptr (all done), or is
// invalid.
enum class FirstMessage {
kNeedsUpdate,
kInMessage,
kNullptr,
};
FirstMessage first_message_ = FirstMessage::kNeedsUpdate;
// Timestamp of the last message returned. Used to make sure nothing goes
// backwards.
monotonic_clock::time_point last_message_time_ = monotonic_clock::min_time;
// Time this node is queued up until. Used for caching.
monotonic_clock::time_point queued_until_ = monotonic_clock::min_time;
};
class TimestampMerger;
// A design requirement is that the relevant data for a channel is not more than
// max_out_of_order_duration out of order. We approach sorting in layers.
//
// 1) Split each (maybe chunked) log file into one queue per channel. Read this
// log file looking for data pertaining to a specific node.
// (SplitMessageReader)
// 2) Merge all the data per channel from the different log files into a sorted
// list of timestamps and messages. (TimestampMerger)
// 3) Combine the timestamps and messages. (TimestampMerger)
// 4) Merge all the channels to produce the next message on a node.
// (ChannelMerger)
// 5) Duplicate this entire stack per node.
// This class splits messages and timestamps up into a queue per channel, and
// handles reading data from multiple chunks.
class SplitMessageReader {
public:
SplitMessageReader(const std::vector<std::string> &filenames);
// Sets the TimestampMerger that gets notified for each channel. The node
// that the TimestampMerger is merging as needs to be passed in.
void SetTimestampMerger(TimestampMerger *timestamp_merger, int channel,
const Node *target_node);
// Returns the (timestamp, queue_index, message_header) for the oldest message
// in a channel, or max_time if there is nothing in the channel.
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
oldest_message(int channel) {
return channels_[channel].data.front_timestamp();
}
// Returns the (timestamp, queue_index, message_header) for the oldest
// delivery time in a channel, or max_time if there is nothing in the channel.
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
oldest_message(int channel, int destination_node) {
return channels_[channel].timestamps[destination_node].front_timestamp();
}
// Returns the timestamp, queue_index, and message for the oldest data on a
// channel. Requeues data as needed.
std::tuple<monotonic_clock::time_point, uint32_t,
SizePrefixedFlatbufferVector<MessageHeader>>
PopOldest(int channel_index);
// Returns the timestamp, queue_index, and message for the oldest timestamp on
// a channel delivered to a node. Requeues data as needed.
std::tuple<monotonic_clock::time_point, uint32_t,
SizePrefixedFlatbufferVector<MessageHeader>>
PopOldestTimestamp(int channel, int node_index);
// Returns the header for the log files.
const LogFileHeader *log_file_header() const {
return &log_file_header_.message();
}
const SizePrefixedFlatbufferVector<LogFileHeader> &raw_log_file_header()
const {
return log_file_header_;
}
// Returns the starting time for this set of log files.
monotonic_clock::time_point monotonic_start_time() {
return monotonic_clock::time_point(
std::chrono::nanoseconds(log_file_header()->monotonic_start_time()));
}
realtime_clock::time_point realtime_start_time() {
return realtime_clock::time_point(
std::chrono::nanoseconds(log_file_header()->realtime_start_time()));
}
// Returns the configuration from the log file header.
const Configuration *configuration() const {
return log_file_header()->configuration();
}
// Returns the node who's point of view this log file is from. Make sure this
// is a pointer in the configuration() nodes list so it can be consumed
// elsewhere.
const Node *node() const {
if (configuration()->has_nodes()) {
return configuration::GetNodeOrDie(configuration(),
log_file_header()->node());
} else {
CHECK(!log_file_header()->has_node());
return nullptr;
}
}
// Returns the timestamp of the newest message read from the log file, and the
// timestamp that we need to re-queue data.
monotonic_clock::time_point newest_timestamp() const {
return newest_timestamp_;
}
// Returns the next time to trigger a requeue.
monotonic_clock::time_point time_to_queue() const { return time_to_queue_; }
// Returns the minimum amount of data needed to queue up for sorting before
// we are guarenteed to not see data out of order.
std::chrono::nanoseconds max_out_of_order_duration() const {
return message_reader_->max_out_of_order_duration();
}
std::string_view filename() const { return message_reader_->filename(); }
// Adds more messages to the sorted list. This reads enough data such that
// oldest_message_time can be replayed safely. Returns false if the log file
// has all been read.
bool QueueMessages(monotonic_clock::time_point oldest_message_time);
// Returns debug strings for a channel, and timestamps for a node.
std::string DebugString(int channel) const;
std::string DebugString(int channel, int node_index) const;
// Returns true if all the messages have been queued from the last log file in
// the list of log files chunks.
bool at_end() const { return at_end_; }
private:
// TODO(austin): Need to copy or refcount the message instead of running
// multiple copies of the reader. Or maybe have a "as_node" index and hide it
// inside.
// Moves to the next log file in the list.
bool NextLogFile();
// Filenames of the log files.
std::vector<std::string> filenames_;
// And the index of the next file to open.
size_t next_filename_index_ = 0;
// Node we are reading as.
const Node *target_node_ = nullptr;
// Log file header to report. This is a copy.
SizePrefixedFlatbufferVector<LogFileHeader> log_file_header_;
// Current log file being read.
std::unique_ptr<MessageReader> message_reader_;
// Datastructure to hold the list of messages, cached timestamp for the
// oldest message, and sender to send with.
struct MessageHeaderQueue {
// If true, this is a timestamp queue.
bool timestamps = false;
// Returns a reference to the the oldest message.
SizePrefixedFlatbufferVector<MessageHeader> &front() {
CHECK_GT(data_.size(), 0u);
return data_.front();
}
// Adds a message to the back of the queue. Returns true if it was actually
// emplaced.
bool emplace_back(SizePrefixedFlatbufferVector<MessageHeader> &&msg);
// Drops the front message. Invalidates the front() reference.
void PopFront();
// The size of the queue.
size_t size() { return data_.size(); }
// Returns a debug string with info about each message in the queue.
std::string DebugString() const;
// Returns the (timestamp, queue_index, message_header) for the oldest
// message.
const std::tuple<monotonic_clock::time_point, uint32_t,
const MessageHeader *>
front_timestamp() {
const MessageHeader &message = front().message();
return std::make_tuple(
monotonic_clock::time_point(
std::chrono::nanoseconds(message.monotonic_sent_time())),
message.queue_index(), &message);
}
// Pointer to the timestamp merger for this queue if available.
TimestampMerger *timestamp_merger = nullptr;
// Pointer to the reader which feeds this queue.
SplitMessageReader *split_reader = nullptr;
private:
// The data.
std::deque<SizePrefixedFlatbufferVector<MessageHeader>> data_;
};
// All the queues needed for a channel. There isn't going to be data in all
// of these.
struct ChannelData {
// The data queue for the channel.
MessageHeaderQueue data;
// Queues for timestamps for each node.
std::vector<MessageHeaderQueue> timestamps;
};
// Data for all the channels.
std::vector<ChannelData> channels_;
// Once we know the node that this SplitMessageReader will be writing as,
// there will be only one MessageHeaderQueue that a specific channel matches.
// Precompute this here for efficiency.
std::vector<MessageHeaderQueue *> channels_to_write_;
monotonic_clock::time_point time_to_queue_ = monotonic_clock::min_time;
// Latches true when we hit the end of the last log file and there is no sense
// poking it further.
bool at_end_ = false;
// Timestamp of the newest message that was read and actually queued. We want
// to track this independently from the log file because we need the
// timestamps here to be timestamps of messages that are queued.
monotonic_clock::time_point newest_timestamp_ = monotonic_clock::min_time;
};
class ChannelMerger;
// Sorts channels (and timestamps) from multiple log files for a single channel.
class TimestampMerger {
public:
TimestampMerger(const Configuration *configuration,
std::vector<SplitMessageReader *> split_message_readers,
int channel_index, const Node *target_node,
ChannelMerger *channel_merger);
// Metadata used to schedule the message.
struct DeliveryTimestamp {
monotonic_clock::time_point monotonic_event_time =
monotonic_clock::min_time;
realtime_clock::time_point realtime_event_time = realtime_clock::min_time;
uint32_t queue_index = 0xffffffff;
monotonic_clock::time_point monotonic_remote_time =
monotonic_clock::min_time;
realtime_clock::time_point realtime_remote_time = realtime_clock::min_time;
uint32_t remote_queue_index = 0xffffffff;
};
// Pushes SplitMessageReader onto the timestamp heap. This should only be
// called when timestamps are placed in the channel this class is merging for
// the reader.
void UpdateTimestamp(
SplitMessageReader *split_message_reader,
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
oldest_message_time) {
PushTimestampHeap(oldest_message_time, split_message_reader);
}
// Pushes SplitMessageReader onto the message heap. This should only be
// called when data is placed in the channel this class is merging for the
// reader.
void Update(
SplitMessageReader *split_message_reader,
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
oldest_message_time) {
PushMessageHeap(oldest_message_time, split_message_reader);
}
// Returns the oldest combined timestamp and data for this channel. If there
// isn't a matching piece of data, returns only the timestamp with no data.
// The caller can determine what the appropriate action is to recover.
std::tuple<DeliveryTimestamp, SizePrefixedFlatbufferVector<MessageHeader>>
PopOldest();
// Tracks if the channel merger has pushed this onto it's heap or not.
bool pushed() { return pushed_; }
// Sets if this has been pushed to the channel merger heap. Should only be
// called by the channel merger.
void set_pushed(bool pushed) { pushed_ = pushed; }
// Returns a debug string with the heaps printed out.
std::string DebugString() const;
// Returns true if we have timestamps.
bool has_timestamps() const { return has_timestamps_; }
// Records that one of the log files ran out of data. This should only be
// called by a SplitMessageReader.
void NoticeAtEnd();
aos::monotonic_clock::time_point channel_merger_time() {
if (has_timestamps_) {
return std::get<0>(timestamp_heap_[0]);
} else {
return std::get<0>(message_heap_[0]);
}
}
private:
// Pushes messages and timestamps to the corresponding heaps.
void PushMessageHeap(
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
timestamp,
SplitMessageReader *split_message_reader);
void PushTimestampHeap(
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
timestamp,
SplitMessageReader *split_message_reader);
// Pops a message from the message heap. This automatically triggers the
// split message reader to re-fetch any new data.
std::tuple<monotonic_clock::time_point, uint32_t,
SizePrefixedFlatbufferVector<MessageHeader>>
PopMessageHeap();
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
oldest_message() const;
std::tuple<monotonic_clock::time_point, uint32_t, const MessageHeader *>
oldest_timestamp() const;
// Pops a message from the timestamp heap. This automatically triggers the
// split message reader to re-fetch any new data.
std::tuple<monotonic_clock::time_point, uint32_t,
SizePrefixedFlatbufferVector<MessageHeader>>
PopTimestampHeap();
const Configuration *configuration_;
// If true, this is a forwarded channel and timestamps should be matched.
bool has_timestamps_ = false;
// Tracks if the ChannelMerger has pushed this onto it's queue.
bool pushed_ = false;
// The split message readers used for source data.
std::vector<SplitMessageReader *> split_message_readers_;
// The channel to merge.
int channel_index_;
// Our node.
int node_index_;
// Heaps for messages and timestamps.
std::vector<
std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>>
message_heap_;
std::vector<
std::tuple<monotonic_clock::time_point, uint32_t, SplitMessageReader *>>
timestamp_heap_;
// Parent channel merger.
ChannelMerger *channel_merger_;
};
// This class handles constructing all the split message readers, channel
// mergers, and combining the results.
class ChannelMerger {
public:
// Builds a ChannelMerger around a set of log files. These are of the format:
// {
// {log1_part0, log1_part1, ...},
// {log2}
// }
// The inner vector is a list of log file chunks which form up a log file.
// The outer vector is a list of log files with subsets of the messages, or
// messages from different nodes.
ChannelMerger(const std::vector<std::vector<std::string>> &filenames);
// Returns the nodes that we know how to merge.
const std::vector<const Node *> nodes() const;
// Sets the node that we will return messages as. Returns true if the node
// has log files and will produce data. This can only be called once, and
// will likely corrupt state if called a second time.
bool SetNode(const Node *target_node);
// Everything else needs the node set before it works.
// Returns a timestamp for the oldest message in this group of logfiles.
monotonic_clock::time_point OldestMessageTime() const;
// Pops the oldest message.
std::tuple<TimestampMerger::DeliveryTimestamp, int,
SizePrefixedFlatbufferVector<MessageHeader>>
PopOldest();
// Returns the config for this set of log files.
const Configuration *configuration() const {
return log_file_header()->configuration();
}
const LogFileHeader *log_file_header() const {
return &log_file_header_.message();
}
// Returns the start times for the configured node's log files.
monotonic_clock::time_point monotonic_start_time() const {
return monotonic_clock::time_point(
std::chrono::nanoseconds(log_file_header()->monotonic_start_time()));
}
realtime_clock::time_point realtime_start_time() const {
return realtime_clock::time_point(
std::chrono::nanoseconds(log_file_header()->realtime_start_time()));
}
// Returns the node set by SetNode above.
const Node *node() const { return node_; }
// Called by the TimestampMerger when new data is available with the provided
// timestamp and channel_index.
void Update(monotonic_clock::time_point timestamp, int channel_index) {
PushChannelHeap(timestamp, channel_index);
}
// Returns a debug string with all the heaps in it. Generally only useful for
// debugging what went wrong.
std::string DebugString() const;
// Returns true if one of the log files has finished reading everything. When
// log file chunks are involved, this means that the last chunk in a log file
// has been read. It is acceptable to be missing data at this point in time.
bool at_end() const { return at_end_; }
// Marks that one of the log files is at the end. This should only be called
// by timestamp mergers.
void NoticeAtEnd() { at_end_ = true; }
private:
// Pushes the timestamp for new data on the provided channel.
void PushChannelHeap(monotonic_clock::time_point timestamp,
int channel_index);
// CHECKs that channel_heap_ and timestamp_heap_ are valid heaps.
void VerifyHeaps();
// All the message readers.
std::vector<std::unique_ptr<SplitMessageReader>> split_message_readers_;
// The log header we are claiming to be.
SizePrefixedFlatbufferVector<LogFileHeader> log_file_header_;
// The timestamp mergers which combine data from the split message readers.
std::vector<TimestampMerger> timestamp_mergers_;
// A heap of the channel readers and timestamps for the oldest data in each.
std::vector<std::pair<monotonic_clock::time_point, int>> channel_heap_;
// Configured node.
const Node *node_;
bool at_end_ = false;
// Cached copy of the list of nodes.
std::vector<const Node *> nodes_;
// Last time popped. Used to detect events being returned out of order.
monotonic_clock::time_point last_popped_time_ = monotonic_clock::min_time;
};
// Returns the node name with a trailing space, or an empty string if we are on
// a single node.
std::string MaybeNodeName(const Node *);
} // namespace aos::logger
#endif // AOS_EVENTS_LOGGING_LOGFILE_UTILS_H_