| /* statlib.c -- Statistical functions for testing the randomness of |
| number sequences. */ |
| |
| /* |
| Copyright 1999, 2000 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library test suite. |
| |
| The GNU MP Library test suite is free software; you can redistribute it |
| and/or modify it under the terms of the GNU General Public License as |
| published by the Free Software Foundation; either version 3 of the License, |
| or (at your option) any later version. |
| |
| The GNU MP Library test suite is distributed in the hope that it will be |
| useful, but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
| Public License for more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| the GNU MP Library test suite. If not, see https://www.gnu.org/licenses/. */ |
| |
| /* The theories for these functions are taken from D. Knuth's "The Art |
| of Computer Programming: Volume 2, Seminumerical Algorithms", Third |
| Edition, Addison Wesley, 1998. */ |
| |
| /* Implementation notes. |
| |
| The Kolmogorov-Smirnov test. |
| |
| Eq. (13) in Knuth, p. 50, says that if X1, X2, ..., Xn are independent |
| observations arranged into ascending order |
| |
| Kp = sqr(n) * max(j/n - F(Xj)) for all 1<=j<=n |
| Km = sqr(n) * max(F(Xj) - (j-1)/n)) for all 1<=j<=n |
| |
| where F(x) = Pr(X <= x) = probability that (X <= x), which for a |
| uniformly distributed random real number between zero and one is |
| exactly the number itself (x). |
| |
| |
| The answer to exercise 23 gives the following implementation, which |
| doesn't need the observations to be sorted in ascending order: |
| |
| for (k = 0; k < m; k++) |
| a[k] = 1.0 |
| b[k] = 0.0 |
| c[k] = 0 |
| |
| for (each observation Xj) |
| Y = F(Xj) |
| k = floor (m * Y) |
| a[k] = min (a[k], Y) |
| b[k] = max (b[k], Y) |
| c[k] += 1 |
| |
| j = 0 |
| rp = rm = 0 |
| for (k = 0; k < m; k++) |
| if (c[k] > 0) |
| rm = max (rm, a[k] - j/n) |
| j += c[k] |
| rp = max (rp, j/n - b[k]) |
| |
| Kp = sqr (n) * rp |
| Km = sqr (n) * rm |
| |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <math.h> |
| |
| #include "gmpstat.h" |
| |
| /* ks (Kp, Km, X, P, n) -- Perform a Kolmogorov-Smirnov test on the N |
| real numbers between zero and one in vector X. P is the |
| distribution function, called for each entry in X, which should |
| calculate the probability of X being greater than or equal to any |
| number in the sequence. (For a uniformly distributed sequence of |
| real numbers between zero and one, this is simply equal to X.) The |
| result is put in Kp and Km. */ |
| |
| void |
| ks (mpf_t Kp, |
| mpf_t Km, |
| mpf_t X[], |
| void (P) (mpf_t, mpf_t), |
| unsigned long int n) |
| { |
| mpf_t Kt; /* temp */ |
| mpf_t f_x; |
| mpf_t f_j; /* j */ |
| mpf_t f_jnq; /* j/n or (j-1)/n */ |
| unsigned long int j; |
| |
| /* Sort the vector in ascending order. */ |
| qsort (X, n, sizeof (__mpf_struct), mpf_cmp); |
| |
| /* K-S test. */ |
| /* Kp = sqr(n) * max(j/n - F(Xj)) for all 1<=j<=n |
| Km = sqr(n) * max(F(Xj) - (j-1)/n)) for all 1<=j<=n |
| */ |
| |
| mpf_init (Kt); mpf_init (f_x); mpf_init (f_j); mpf_init (f_jnq); |
| mpf_set_ui (Kp, 0); mpf_set_ui (Km, 0); |
| for (j = 1; j <= n; j++) |
| { |
| P (f_x, X[j-1]); |
| mpf_set_ui (f_j, j); |
| |
| mpf_div_ui (f_jnq, f_j, n); |
| mpf_sub (Kt, f_jnq, f_x); |
| if (mpf_cmp (Kt, Kp) > 0) |
| mpf_set (Kp, Kt); |
| if (g_debug > DEBUG_2) |
| { |
| printf ("j=%lu ", j); |
| printf ("P()="); mpf_out_str (stdout, 10, 2, f_x); printf ("\t"); |
| |
| printf ("jnq="); mpf_out_str (stdout, 10, 2, f_jnq); printf (" "); |
| printf ("diff="); mpf_out_str (stdout, 10, 2, Kt); printf (" "); |
| printf ("Kp="); mpf_out_str (stdout, 10, 2, Kp); printf ("\t"); |
| } |
| mpf_sub_ui (f_j, f_j, 1); |
| mpf_div_ui (f_jnq, f_j, n); |
| mpf_sub (Kt, f_x, f_jnq); |
| if (mpf_cmp (Kt, Km) > 0) |
| mpf_set (Km, Kt); |
| |
| if (g_debug > DEBUG_2) |
| { |
| printf ("jnq="); mpf_out_str (stdout, 10, 2, f_jnq); printf (" "); |
| printf ("diff="); mpf_out_str (stdout, 10, 2, Kt); printf (" "); |
| printf ("Km="); mpf_out_str (stdout, 10, 2, Km); printf (" "); |
| printf ("\n"); |
| } |
| } |
| mpf_sqrt_ui (Kt, n); |
| mpf_mul (Kp, Kp, Kt); |
| mpf_mul (Km, Km, Kt); |
| |
| mpf_clear (Kt); mpf_clear (f_x); mpf_clear (f_j); mpf_clear (f_jnq); |
| } |
| |
| /* ks_table(val, n) -- calculate probability for Kp/Km less than or |
| equal to VAL with N observations. See [Knuth section 3.3.1] */ |
| |
| void |
| ks_table (mpf_t p, mpf_t val, const unsigned int n) |
| { |
| /* We use Eq. (27), Knuth p.58, skipping O(1/n) for simplicity. |
| This shortcut will result in too high probabilities, especially |
| when n is small. |
| |
| Pr(Kp(n) <= s) = 1 - pow(e, -2*s^2) * (1 - 2/3*s/sqrt(n) + O(1/n)) */ |
| |
| /* We have 's' in variable VAL and store the result in P. */ |
| |
| mpf_t t1, t2; |
| |
| mpf_init (t1); mpf_init (t2); |
| |
| /* t1 = 1 - 2/3 * s/sqrt(n) */ |
| mpf_sqrt_ui (t1, n); |
| mpf_div (t1, val, t1); |
| mpf_mul_ui (t1, t1, 2); |
| mpf_div_ui (t1, t1, 3); |
| mpf_ui_sub (t1, 1, t1); |
| |
| /* t2 = pow(e, -2*s^2) */ |
| #ifndef OLDGMP |
| mpf_pow_ui (t2, val, 2); /* t2 = s^2 */ |
| mpf_set_d (t2, exp (-(2.0 * mpf_get_d (t2)))); |
| #else |
| /* hmmm, gmp doesn't have pow() for floats. use doubles. */ |
| mpf_set_d (t2, pow (M_E, -(2 * pow (mpf_get_d (val), 2)))); |
| #endif |
| |
| /* p = 1 - t1 * t2 */ |
| mpf_mul (t1, t1, t2); |
| mpf_ui_sub (p, 1, t1); |
| |
| mpf_clear (t1); mpf_clear (t2); |
| } |
| |
| static double x2_table_X[][7] = { |
| { -2.33, -1.64, -.674, 0.0, 0.674, 1.64, 2.33 }, /* x */ |
| { 5.4289, 2.6896, .454276, 0.0, .454276, 2.6896, 5.4289} /* x^2 */ |
| }; |
| |
| #define _2D3 ((double) .6666666666) |
| |
| /* x2_table (t, v, n) -- return chi-square table row for V in T[]. */ |
| void |
| x2_table (double t[], |
| unsigned int v) |
| { |
| int f; |
| |
| |
| /* FIXME: Do a table lookup for v <= 30 since the following formula |
| [Knuth, vol 2, 3.3.1] is only good for v > 30. */ |
| |
| /* value = v + sqrt(2*v) * X[p] + (2/3) * X[p]^2 - 2/3 + O(1/sqrt(t) */ |
| /* NOTE: The O() term is ignored for simplicity. */ |
| |
| for (f = 0; f < 7; f++) |
| t[f] = |
| v + |
| sqrt (2 * v) * x2_table_X[0][f] + |
| _2D3 * x2_table_X[1][f] - _2D3; |
| } |
| |
| |
| /* P(p, x) -- Distribution function. Calculate the probability of X |
| being greater than or equal to any number in the sequence. For a |
| random real number between zero and one given by a uniformly |
| distributed random number generator, this is simply equal to X. */ |
| |
| static void |
| P (mpf_t p, mpf_t x) |
| { |
| mpf_set (p, x); |
| } |
| |
| /* mpf_freqt() -- Frequency test using KS on N real numbers between zero |
| and one. See [Knuth vol 2, p.61]. */ |
| void |
| mpf_freqt (mpf_t Kp, |
| mpf_t Km, |
| mpf_t X[], |
| const unsigned long int n) |
| { |
| ks (Kp, Km, X, P, n); |
| } |
| |
| |
| /* The Chi-square test. Eq. (8) in Knuth vol. 2 says that if Y[] |
| holds the observations and p[] is the probability for.. (to be |
| continued!) |
| |
| V = 1/n * sum((s=1 to k) Y[s]^2 / p[s]) - n */ |
| |
| void |
| x2 (mpf_t V, /* result */ |
| unsigned long int X[], /* data */ |
| unsigned int k, /* #of categories */ |
| void (P) (mpf_t, unsigned long int, void *), /* probability func */ |
| void *x, /* extra user data passed to P() */ |
| unsigned long int n) /* #of samples */ |
| { |
| unsigned int f; |
| mpf_t f_t, f_t2; /* temp floats */ |
| |
| mpf_init (f_t); mpf_init (f_t2); |
| |
| |
| mpf_set_ui (V, 0); |
| for (f = 0; f < k; f++) |
| { |
| if (g_debug > DEBUG_2) |
| fprintf (stderr, "%u: P()=", f); |
| mpf_set_ui (f_t, X[f]); |
| mpf_mul (f_t, f_t, f_t); /* f_t = X[f]^2 */ |
| P (f_t2, f, x); /* f_t2 = Pr(f) */ |
| if (g_debug > DEBUG_2) |
| mpf_out_str (stderr, 10, 2, f_t2); |
| mpf_div (f_t, f_t, f_t2); |
| mpf_add (V, V, f_t); |
| if (g_debug > DEBUG_2) |
| { |
| fprintf (stderr, "\tV="); |
| mpf_out_str (stderr, 10, 2, V); |
| fprintf (stderr, "\t"); |
| } |
| } |
| if (g_debug > DEBUG_2) |
| fprintf (stderr, "\n"); |
| mpf_div_ui (V, V, n); |
| mpf_sub_ui (V, V, n); |
| |
| mpf_clear (f_t); mpf_clear (f_t2); |
| } |
| |
| /* Pzf(p, s, x) -- Probability for category S in mpz_freqt(). It's |
| 1/d for all S. X is a pointer to an unsigned int holding 'd'. */ |
| static void |
| Pzf (mpf_t p, unsigned long int s, void *x) |
| { |
| mpf_set_ui (p, 1); |
| mpf_div_ui (p, p, *((unsigned int *) x)); |
| } |
| |
| /* mpz_freqt(V, X, imax, n) -- Frequency test on integers. [Knuth, |
| vol 2, 3.3.2]. Keep IMAX low on this one, since we loop from 0 to |
| IMAX. 128 or 256 could be nice. |
| |
| X[] must not contain numbers outside the range 0 <= X <= IMAX. |
| |
| Return value is number of observations actually used, after |
| discarding entries out of range. |
| |
| Since X[] contains integers between zero and IMAX, inclusive, we |
| have IMAX+1 categories. |
| |
| Note that N should be at least 5*IMAX. Result is put in V and can |
| be compared to output from x2_table (v=IMAX). */ |
| |
| unsigned long int |
| mpz_freqt (mpf_t V, |
| mpz_t X[], |
| unsigned int imax, |
| const unsigned long int n) |
| { |
| unsigned long int *v; /* result */ |
| unsigned int f; |
| unsigned int d; /* number of categories = imax+1 */ |
| unsigned int uitemp; |
| unsigned long int usedn; |
| |
| |
| d = imax + 1; |
| |
| v = (unsigned long int *) calloc (imax + 1, sizeof (unsigned long int)); |
| if (NULL == v) |
| { |
| fprintf (stderr, "mpz_freqt(): out of memory\n"); |
| exit (1); |
| } |
| |
| /* count */ |
| usedn = n; /* actual number of observations */ |
| for (f = 0; f < n; f++) |
| { |
| uitemp = mpz_get_ui(X[f]); |
| if (uitemp > imax) /* sanity check */ |
| { |
| if (g_debug) |
| fprintf (stderr, "mpz_freqt(): warning: input insanity: %u, "\ |
| "ignored.\n", uitemp); |
| usedn--; |
| continue; |
| } |
| v[uitemp]++; |
| } |
| |
| if (g_debug > DEBUG_2) |
| { |
| fprintf (stderr, "counts:\n"); |
| for (f = 0; f <= imax; f++) |
| fprintf (stderr, "%u:\t%lu\n", f, v[f]); |
| } |
| |
| /* chi-square with k=imax+1 and P(x)=1/(imax+1) for all x.*/ |
| x2 (V, v, d, Pzf, (void *) &d, usedn); |
| |
| free (v); |
| return (usedn); |
| } |
| |
| /* debug dummy to drag in dump funcs */ |
| void |
| foo_debug () |
| { |
| if (0) |
| { |
| mpf_dump (0); |
| #ifndef OLDGMP |
| mpz_dump (0); |
| #endif |
| } |
| } |
| |
| /* merit (rop, t, v, m) -- calculate merit for spectral test result in |
| dimension T, see Knuth p. 105. BUGS: Only valid for 2 <= T <= |
| 6. */ |
| void |
| merit (mpf_t rop, unsigned int t, mpf_t v, mpz_t m) |
| { |
| int f; |
| mpf_t f_m, f_const, f_pi; |
| |
| mpf_init (f_m); |
| mpf_set_z (f_m, m); |
| mpf_init_set_d (f_const, M_PI); |
| mpf_init_set_d (f_pi, M_PI); |
| |
| switch (t) |
| { |
| case 2: /* PI */ |
| break; |
| case 3: /* PI * 4/3 */ |
| mpf_mul_ui (f_const, f_const, 4); |
| mpf_div_ui (f_const, f_const, 3); |
| break; |
| case 4: /* PI^2 * 1/2 */ |
| mpf_mul (f_const, f_const, f_pi); |
| mpf_div_ui (f_const, f_const, 2); |
| break; |
| case 5: /* PI^2 * 8/15 */ |
| mpf_mul (f_const, f_const, f_pi); |
| mpf_mul_ui (f_const, f_const, 8); |
| mpf_div_ui (f_const, f_const, 15); |
| break; |
| case 6: /* PI^3 * 1/6 */ |
| mpf_mul (f_const, f_const, f_pi); |
| mpf_mul (f_const, f_const, f_pi); |
| mpf_div_ui (f_const, f_const, 6); |
| break; |
| default: |
| fprintf (stderr, |
| "spect (merit): can't calculate merit for dimensions > 6\n"); |
| mpf_set_ui (f_const, 0); |
| break; |
| } |
| |
| /* rop = v^t */ |
| mpf_set (rop, v); |
| for (f = 1; f < t; f++) |
| mpf_mul (rop, rop, v); |
| mpf_mul (rop, rop, f_const); |
| mpf_div (rop, rop, f_m); |
| |
| mpf_clear (f_m); |
| mpf_clear (f_const); |
| mpf_clear (f_pi); |
| } |
| |
| double |
| merit_u (unsigned int t, mpf_t v, mpz_t m) |
| { |
| mpf_t rop; |
| double res; |
| |
| mpf_init (rop); |
| merit (rop, t, v, m); |
| res = mpf_get_d (rop); |
| mpf_clear (rop); |
| return res; |
| } |
| |
| /* f_floor (rop, op) -- Set rop = floor (op). */ |
| void |
| f_floor (mpf_t rop, mpf_t op) |
| { |
| mpz_t z; |
| |
| mpz_init (z); |
| |
| /* No mpf_floor(). Convert to mpz and back. */ |
| mpz_set_f (z, op); |
| mpf_set_z (rop, z); |
| |
| mpz_clear (z); |
| } |
| |
| |
| /* vz_dot (rop, v1, v2, nelem) -- compute dot product of z-vectors V1, |
| V2. N is number of elements in vectors V1 and V2. */ |
| |
| void |
| vz_dot (mpz_t rop, mpz_t V1[], mpz_t V2[], unsigned int n) |
| { |
| mpz_t t; |
| |
| mpz_init (t); |
| mpz_set_ui (rop, 0); |
| while (n--) |
| { |
| mpz_mul (t, V1[n], V2[n]); |
| mpz_add (rop, rop, t); |
| } |
| |
| mpz_clear (t); |
| } |
| |
| void |
| spectral_test (mpf_t rop[], unsigned int T, mpz_t a, mpz_t m) |
| { |
| /* Knuth "Seminumerical Algorithms, Third Edition", section 3.3.4 |
| (pp. 101-103). */ |
| |
| /* v[t] = min { sqrt (x[1]^2 + ... + x[t]^2) | |
| x[1] + a*x[2] + ... + pow (a, t-1) * x[t] is congruent to 0 (mod m) } */ |
| |
| |
| /* Variables. */ |
| unsigned int ui_t; |
| unsigned int ui_i, ui_j, ui_k, ui_l; |
| mpf_t f_tmp1, f_tmp2; |
| mpz_t tmp1, tmp2, tmp3; |
| mpz_t U[GMP_SPECT_MAXT][GMP_SPECT_MAXT], |
| V[GMP_SPECT_MAXT][GMP_SPECT_MAXT], |
| X[GMP_SPECT_MAXT], |
| Y[GMP_SPECT_MAXT], |
| Z[GMP_SPECT_MAXT]; |
| mpz_t h, hp, r, s, p, pp, q, u, v; |
| |
| /* GMP inits. */ |
| mpf_init (f_tmp1); |
| mpf_init (f_tmp2); |
| for (ui_i = 0; ui_i < GMP_SPECT_MAXT; ui_i++) |
| { |
| for (ui_j = 0; ui_j < GMP_SPECT_MAXT; ui_j++) |
| { |
| mpz_init_set_ui (U[ui_i][ui_j], 0); |
| mpz_init_set_ui (V[ui_i][ui_j], 0); |
| } |
| mpz_init_set_ui (X[ui_i], 0); |
| mpz_init_set_ui (Y[ui_i], 0); |
| mpz_init (Z[ui_i]); |
| } |
| mpz_init (tmp1); |
| mpz_init (tmp2); |
| mpz_init (tmp3); |
| mpz_init (h); |
| mpz_init (hp); |
| mpz_init (r); |
| mpz_init (s); |
| mpz_init (p); |
| mpz_init (pp); |
| mpz_init (q); |
| mpz_init (u); |
| mpz_init (v); |
| |
| /* Implementation inits. */ |
| if (T > GMP_SPECT_MAXT) |
| T = GMP_SPECT_MAXT; /* FIXME: Lazy. */ |
| |
| /* S1 [Initialize.] */ |
| ui_t = 2 - 1; /* NOTE: `t' in description == ui_t + 1 |
| for easy indexing */ |
| mpz_set (h, a); |
| mpz_set (hp, m); |
| mpz_set_ui (p, 1); |
| mpz_set_ui (pp, 0); |
| mpz_set (r, a); |
| mpz_pow_ui (s, a, 2); |
| mpz_add_ui (s, s, 1); /* s = 1 + a^2 */ |
| |
| /* S2 [Euclidean step.] */ |
| while (1) |
| { |
| if (g_debug > DEBUG_1) |
| { |
| mpz_mul (tmp1, h, pp); |
| mpz_mul (tmp2, hp, p); |
| mpz_sub (tmp1, tmp1, tmp2); |
| if (mpz_cmpabs (m, tmp1)) |
| { |
| printf ("***BUG***: h*pp - hp*p = "); |
| mpz_out_str (stdout, 10, tmp1); |
| printf ("\n"); |
| } |
| } |
| if (g_debug > DEBUG_2) |
| { |
| printf ("hp = "); |
| mpz_out_str (stdout, 10, hp); |
| printf ("\nh = "); |
| mpz_out_str (stdout, 10, h); |
| printf ("\n"); |
| fflush (stdout); |
| } |
| |
| if (mpz_sgn (h)) |
| mpz_tdiv_q (q, hp, h); /* q = floor(hp/h) */ |
| else |
| mpz_set_ui (q, 1); |
| |
| if (g_debug > DEBUG_2) |
| { |
| printf ("q = "); |
| mpz_out_str (stdout, 10, q); |
| printf ("\n"); |
| fflush (stdout); |
| } |
| |
| mpz_mul (tmp1, q, h); |
| mpz_sub (u, hp, tmp1); /* u = hp - q*h */ |
| |
| mpz_mul (tmp1, q, p); |
| mpz_sub (v, pp, tmp1); /* v = pp - q*p */ |
| |
| mpz_pow_ui (tmp1, u, 2); |
| mpz_pow_ui (tmp2, v, 2); |
| mpz_add (tmp1, tmp1, tmp2); |
| if (mpz_cmp (tmp1, s) < 0) |
| { |
| mpz_set (s, tmp1); /* s = u^2 + v^2 */ |
| mpz_set (hp, h); /* hp = h */ |
| mpz_set (h, u); /* h = u */ |
| mpz_set (pp, p); /* pp = p */ |
| mpz_set (p, v); /* p = v */ |
| } |
| else |
| break; |
| } |
| |
| /* S3 [Compute v2.] */ |
| mpz_sub (u, u, h); |
| mpz_sub (v, v, p); |
| |
| mpz_pow_ui (tmp1, u, 2); |
| mpz_pow_ui (tmp2, v, 2); |
| mpz_add (tmp1, tmp1, tmp2); |
| if (mpz_cmp (tmp1, s) < 0) |
| { |
| mpz_set (s, tmp1); /* s = u^2 + v^2 */ |
| mpz_set (hp, u); |
| mpz_set (pp, v); |
| } |
| mpf_set_z (f_tmp1, s); |
| mpf_sqrt (rop[ui_t - 1], f_tmp1); |
| |
| /* S4 [Advance t.] */ |
| mpz_neg (U[0][0], h); |
| mpz_set (U[0][1], p); |
| mpz_neg (U[1][0], hp); |
| mpz_set (U[1][1], pp); |
| |
| mpz_set (V[0][0], pp); |
| mpz_set (V[0][1], hp); |
| mpz_neg (V[1][0], p); |
| mpz_neg (V[1][1], h); |
| if (mpz_cmp_ui (pp, 0) > 0) |
| { |
| mpz_neg (V[0][0], V[0][0]); |
| mpz_neg (V[0][1], V[0][1]); |
| mpz_neg (V[1][0], V[1][0]); |
| mpz_neg (V[1][1], V[1][1]); |
| } |
| |
| while (ui_t + 1 != T) /* S4 loop */ |
| { |
| ui_t++; |
| mpz_mul (r, a, r); |
| mpz_mod (r, r, m); |
| |
| /* Add new row and column to U and V. They are initialized with |
| all elements set to zero, so clearing is not necessary. */ |
| |
| mpz_neg (U[ui_t][0], r); /* U: First col in new row. */ |
| mpz_set_ui (U[ui_t][ui_t], 1); /* U: Last col in new row. */ |
| |
| mpz_set (V[ui_t][ui_t], m); /* V: Last col in new row. */ |
| |
| /* "Finally, for 1 <= i < t, |
| set q = round (vi1 * r / m), |
| vit = vi1*r - q*m, |
| and Ut=Ut+q*Ui */ |
| |
| for (ui_i = 0; ui_i < ui_t; ui_i++) |
| { |
| mpz_mul (tmp1, V[ui_i][0], r); /* tmp1=vi1*r */ |
| zdiv_round (q, tmp1, m); /* q=round(vi1*r/m) */ |
| mpz_mul (tmp2, q, m); /* tmp2=q*m */ |
| mpz_sub (V[ui_i][ui_t], tmp1, tmp2); |
| |
| for (ui_j = 0; ui_j <= ui_t; ui_j++) /* U[t] = U[t] + q*U[i] */ |
| { |
| mpz_mul (tmp1, q, U[ui_i][ui_j]); /* tmp=q*uij */ |
| mpz_add (U[ui_t][ui_j], U[ui_t][ui_j], tmp1); /* utj = utj + q*uij */ |
| } |
| } |
| |
| /* s = min (s, zdot (U[t], U[t]) */ |
| vz_dot (tmp1, U[ui_t], U[ui_t], ui_t + 1); |
| if (mpz_cmp (tmp1, s) < 0) |
| mpz_set (s, tmp1); |
| |
| ui_k = ui_t; |
| ui_j = 0; /* WARNING: ui_j no longer a temp. */ |
| |
| /* S5 [Transform.] */ |
| if (g_debug > DEBUG_2) |
| printf ("(t, k, j, q1, q2, ...)\n"); |
| do |
| { |
| if (g_debug > DEBUG_2) |
| printf ("(%u, %u, %u", ui_t + 1, ui_k + 1, ui_j + 1); |
| |
| for (ui_i = 0; ui_i <= ui_t; ui_i++) |
| { |
| if (ui_i != ui_j) |
| { |
| vz_dot (tmp1, V[ui_i], V[ui_j], ui_t + 1); /* tmp1=dot(Vi,Vj). */ |
| mpz_abs (tmp2, tmp1); |
| mpz_mul_ui (tmp2, tmp2, 2); /* tmp2 = 2*abs(dot(Vi,Vj) */ |
| vz_dot (tmp3, V[ui_j], V[ui_j], ui_t + 1); /* tmp3=dot(Vj,Vj). */ |
| |
| if (mpz_cmp (tmp2, tmp3) > 0) |
| { |
| zdiv_round (q, tmp1, tmp3); /* q=round(Vi.Vj/Vj.Vj) */ |
| if (g_debug > DEBUG_2) |
| { |
| printf (", "); |
| mpz_out_str (stdout, 10, q); |
| } |
| |
| for (ui_l = 0; ui_l <= ui_t; ui_l++) |
| { |
| mpz_mul (tmp1, q, V[ui_j][ui_l]); |
| mpz_sub (V[ui_i][ui_l], V[ui_i][ui_l], tmp1); /* Vi=Vi-q*Vj */ |
| mpz_mul (tmp1, q, U[ui_i][ui_l]); |
| mpz_add (U[ui_j][ui_l], U[ui_j][ui_l], tmp1); /* Uj=Uj+q*Ui */ |
| } |
| |
| vz_dot (tmp1, U[ui_j], U[ui_j], ui_t + 1); /* tmp1=dot(Uj,Uj) */ |
| if (mpz_cmp (tmp1, s) < 0) /* s = min(s,dot(Uj,Uj)) */ |
| mpz_set (s, tmp1); |
| ui_k = ui_j; |
| } |
| else if (g_debug > DEBUG_2) |
| printf (", #"); /* 2|Vi.Vj| <= Vj.Vj */ |
| } |
| else if (g_debug > DEBUG_2) |
| printf (", *"); /* i == j */ |
| } |
| |
| if (g_debug > DEBUG_2) |
| printf (")\n"); |
| |
| /* S6 [Advance j.] */ |
| if (ui_j == ui_t) |
| ui_j = 0; |
| else |
| ui_j++; |
| } |
| while (ui_j != ui_k); /* S5 */ |
| |
| /* From Knuth p. 104: "The exhaustive search in steps S8-S10 |
| reduces the value of s only rarely." */ |
| #ifdef DO_SEARCH |
| /* S7 [Prepare for search.] */ |
| /* Find minimum in (x[1], ..., x[t]) satisfying condition |
| x[k]^2 <= f(y[1], ...,y[t]) * dot(V[k],V[k]) */ |
| |
| ui_k = ui_t; |
| if (g_debug > DEBUG_2) |
| { |
| printf ("searching..."); |
| /*for (f = 0; f < ui_t*/ |
| fflush (stdout); |
| } |
| |
| /* Z[i] = floor (sqrt (floor (dot(V[i],V[i]) * s / m^2))); */ |
| mpz_pow_ui (tmp1, m, 2); |
| mpf_set_z (f_tmp1, tmp1); |
| mpf_set_z (f_tmp2, s); |
| mpf_div (f_tmp1, f_tmp2, f_tmp1); /* f_tmp1 = s/m^2 */ |
| for (ui_i = 0; ui_i <= ui_t; ui_i++) |
| { |
| vz_dot (tmp1, V[ui_i], V[ui_i], ui_t + 1); |
| mpf_set_z (f_tmp2, tmp1); |
| mpf_mul (f_tmp2, f_tmp2, f_tmp1); |
| f_floor (f_tmp2, f_tmp2); |
| mpf_sqrt (f_tmp2, f_tmp2); |
| mpz_set_f (Z[ui_i], f_tmp2); |
| } |
| |
| /* S8 [Advance X[k].] */ |
| do |
| { |
| if (g_debug > DEBUG_2) |
| { |
| printf ("X[%u] = ", ui_k); |
| mpz_out_str (stdout, 10, X[ui_k]); |
| printf ("\tZ[%u] = ", ui_k); |
| mpz_out_str (stdout, 10, Z[ui_k]); |
| printf ("\n"); |
| fflush (stdout); |
| } |
| |
| if (mpz_cmp (X[ui_k], Z[ui_k])) |
| { |
| mpz_add_ui (X[ui_k], X[ui_k], 1); |
| for (ui_i = 0; ui_i <= ui_t; ui_i++) |
| mpz_add (Y[ui_i], Y[ui_i], U[ui_k][ui_i]); |
| |
| /* S9 [Advance k.] */ |
| while (++ui_k <= ui_t) |
| { |
| mpz_neg (X[ui_k], Z[ui_k]); |
| mpz_mul_ui (tmp1, Z[ui_k], 2); |
| for (ui_i = 0; ui_i <= ui_t; ui_i++) |
| { |
| mpz_mul (tmp2, tmp1, U[ui_k][ui_i]); |
| mpz_sub (Y[ui_i], Y[ui_i], tmp2); |
| } |
| } |
| vz_dot (tmp1, Y, Y, ui_t + 1); |
| if (mpz_cmp (tmp1, s) < 0) |
| mpz_set (s, tmp1); |
| } |
| } |
| while (--ui_k); |
| #endif /* DO_SEARCH */ |
| mpf_set_z (f_tmp1, s); |
| mpf_sqrt (rop[ui_t - 1], f_tmp1); |
| #ifdef DO_SEARCH |
| if (g_debug > DEBUG_2) |
| printf ("done.\n"); |
| #endif /* DO_SEARCH */ |
| } /* S4 loop */ |
| |
| /* Clear GMP variables. */ |
| |
| mpf_clear (f_tmp1); |
| mpf_clear (f_tmp2); |
| for (ui_i = 0; ui_i < GMP_SPECT_MAXT; ui_i++) |
| { |
| for (ui_j = 0; ui_j < GMP_SPECT_MAXT; ui_j++) |
| { |
| mpz_clear (U[ui_i][ui_j]); |
| mpz_clear (V[ui_i][ui_j]); |
| } |
| mpz_clear (X[ui_i]); |
| mpz_clear (Y[ui_i]); |
| mpz_clear (Z[ui_i]); |
| } |
| mpz_clear (tmp1); |
| mpz_clear (tmp2); |
| mpz_clear (tmp3); |
| mpz_clear (h); |
| mpz_clear (hp); |
| mpz_clear (r); |
| mpz_clear (s); |
| mpz_clear (p); |
| mpz_clear (pp); |
| mpz_clear (q); |
| mpz_clear (u); |
| mpz_clear (v); |
| |
| return; |
| } |