| %{ |
| /* A simple integer desk calculator using yacc and gmp. |
| |
| Copyright 2000-2002 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| This program is free software; you can redistribute it and/or modify it under |
| the terms of the GNU General Public License as published by the Free Software |
| Foundation; either version 3 of the License, or (at your option) any later |
| version. |
| |
| This program is distributed in the hope that it will be useful, but WITHOUT ANY |
| WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A |
| PARTICULAR PURPOSE. See the GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License along with |
| this program. If not, see https://www.gnu.org/licenses/. */ |
| |
| |
| /* This is a simple program, meant only to show one way to use GMP for this |
| sort of thing. There's few features, and error checking is minimal. |
| Standard input is read, calc_help() below shows the inputs accepted. |
| |
| Expressions are evaluated as they're read. If user defined functions |
| were wanted it'd be necessary to build a parse tree like pexpr.c does, or |
| a list of operations for a stack based evaluator. That would also make |
| it possible to detect and optimize evaluations "mod m" like pexpr.c does. |
| |
| A stack is used for intermediate values in the expression evaluation, |
| separate from the yacc parser stack. This is simple, makes error |
| recovery easy, minimizes the junk around mpz calls in the rules, and |
| saves initializing or clearing "mpz_t"s during a calculation. A |
| disadvantage though is that variables must be copied to the stack to be |
| worked on. A more sophisticated calculator or language system might be |
| able to avoid that when executing a compiled or semi-compiled form. |
| |
| Avoiding repeated initializing and clearing of "mpz_t"s is important. In |
| this program the time spent parsing is obviously much greater than any |
| possible saving from this, but a proper calculator or language should |
| take some trouble over it. Don't be surprised if an init/clear takes 3 |
| or more times as long as a 10 limb addition, depending on the system (see |
| the mpz_init_realloc_clear example in tune/README). */ |
| |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include "gmp.h" |
| #define NO_CALC_H /* because it conflicts with normal calc.c stuff */ |
| #include "calc-common.h" |
| |
| |
| #define numberof(x) (sizeof (x) / sizeof ((x)[0])) |
| |
| |
| void |
| calc_help (void) |
| { |
| printf ("Examples:\n"); |
| printf (" 2+3*4 expressions are evaluated\n"); |
| printf (" x=5^6 variables a to z can be set and used\n"); |
| printf ("Operators:\n"); |
| printf (" + - * arithmetic\n"); |
| printf (" / %% division and remainder (rounding towards negative infinity)\n"); |
| printf (" ^ exponentiation\n"); |
| printf (" ! factorial\n"); |
| printf (" << >> left and right shifts\n"); |
| printf (" <= >= > \\ comparisons, giving 1 if true, 0 if false\n"); |
| printf (" == != < /\n"); |
| printf (" && || logical and/or, giving 1 if true, 0 if false\n"); |
| printf ("Functions:\n"); |
| printf (" abs(n) absolute value\n"); |
| printf (" bin(n,m) binomial coefficient\n"); |
| printf (" fib(n) fibonacci number\n"); |
| printf (" gcd(a,b,..) greatest common divisor\n"); |
| printf (" kron(a,b) kronecker symbol\n"); |
| printf (" lcm(a,b,..) least common multiple\n"); |
| printf (" lucnum(n) lucas number\n"); |
| printf (" nextprime(n) next prime after n\n"); |
| printf (" powm(b,e,m) modulo powering, b^e%%m\n"); |
| printf (" root(n,r) r-th root\n"); |
| printf (" sqrt(n) square root\n"); |
| printf ("Other:\n"); |
| printf (" hex \\ set hex or decimal for input and output\n"); |
| printf (" decimal / (\"0x\" can be used for hex too)\n"); |
| printf (" quit exit program (EOF works too)\n"); |
| printf (" ; statements are separated with a ; or newline\n"); |
| printf (" \\ continue expressions with \\ before newline\n"); |
| printf (" # xxx comments are # though to newline\n"); |
| printf ("Hex numbers must be entered in upper case, to distinguish them from the\n"); |
| printf ("variables a to f (like in bc).\n"); |
| } |
| |
| |
| int ibase = 0; |
| int obase = 10; |
| |
| |
| /* The stack is a fixed size, which means there's a limit on the nesting |
| allowed in expressions. A more sophisticated program could let it grow |
| dynamically. */ |
| |
| mpz_t stack[100]; |
| mpz_ptr sp = stack[0]; |
| |
| #define CHECK_OVERFLOW() \ |
| if (sp >= stack[numberof(stack)]) /* FIXME */ \ |
| { \ |
| fprintf (stderr, \ |
| "Value stack overflow, too much nesting in expression\n"); \ |
| YYERROR; \ |
| } |
| |
| #define CHECK_EMPTY() \ |
| if (sp != stack[0]) \ |
| { \ |
| fprintf (stderr, "Oops, expected the value stack to be empty\n"); \ |
| sp = stack[0]; \ |
| } |
| |
| |
| mpz_t variable[26]; |
| |
| #define CHECK_VARIABLE(var) \ |
| if ((var) < 0 || (var) >= numberof (variable)) \ |
| { \ |
| fprintf (stderr, "Oops, bad variable somehow: %d\n", var); \ |
| YYERROR; \ |
| } |
| |
| |
| #define CHECK_UI(name,z) \ |
| if (! mpz_fits_ulong_p (z)) \ |
| { \ |
| fprintf (stderr, "%s too big\n", name); \ |
| YYERROR; \ |
| } |
| |
| %} |
| |
| %union { |
| char *str; |
| int var; |
| } |
| |
| %token EOS BAD |
| %token HELP HEX DECIMAL QUIT |
| %token ABS BIN FIB GCD KRON LCM LUCNUM NEXTPRIME POWM ROOT SQRT |
| %token <str> NUMBER |
| %token <var> VARIABLE |
| |
| /* operators, increasing precedence */ |
| %left LOR |
| %left LAND |
| %nonassoc '<' '>' EQ NE LE GE |
| %left LSHIFT RSHIFT |
| %left '+' '-' |
| %left '*' '/' '%' |
| %nonassoc UMINUS |
| %right '^' |
| %nonassoc '!' |
| |
| %% |
| |
| top: |
| statement |
| | statements statement; |
| |
| statements: |
| statement EOS |
| | statements statement EOS |
| | error EOS { sp = stack[0]; yyerrok; }; |
| |
| statement: |
| /* empty */ |
| | e { |
| mpz_out_str (stdout, obase, sp); putchar ('\n'); |
| sp--; |
| CHECK_EMPTY (); |
| } |
| | VARIABLE '=' e { |
| CHECK_VARIABLE ($1); |
| mpz_swap (variable[$1], sp); |
| sp--; |
| CHECK_EMPTY (); |
| } |
| | HELP { calc_help (); } |
| | HEX { ibase = 16; obase = -16; } |
| | DECIMAL { ibase = 0; obase = 10; } |
| | QUIT { exit (0); }; |
| |
| /* "e" leaves it's value on the top of the mpz stack. A rule like "e '+' e" |
| will have done a reduction for the first "e" first and the second "e" |
| second, so the code receives the values in that order on the stack. */ |
| e: |
| '(' e ')' /* value on stack */ |
| | e '+' e { sp--; mpz_add (sp, sp, sp+1); } |
| | e '-' e { sp--; mpz_sub (sp, sp, sp+1); } |
| | e '*' e { sp--; mpz_mul (sp, sp, sp+1); } |
| | e '/' e { sp--; mpz_fdiv_q (sp, sp, sp+1); } |
| | e '%' e { sp--; mpz_fdiv_r (sp, sp, sp+1); } |
| | e '^' e { CHECK_UI ("Exponent", sp); |
| sp--; mpz_pow_ui (sp, sp, mpz_get_ui (sp+1)); } |
| | e LSHIFT e { CHECK_UI ("Shift count", sp); |
| sp--; mpz_mul_2exp (sp, sp, mpz_get_ui (sp+1)); } |
| | e RSHIFT e { CHECK_UI ("Shift count", sp); |
| sp--; mpz_fdiv_q_2exp (sp, sp, mpz_get_ui (sp+1)); } |
| | e '!' { CHECK_UI ("Factorial", sp); |
| mpz_fac_ui (sp, mpz_get_ui (sp)); } |
| | '-' e %prec UMINUS { mpz_neg (sp, sp); } |
| |
| | e '<' e { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) < 0); } |
| | e LE e { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) <= 0); } |
| | e EQ e { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) == 0); } |
| | e NE e { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) != 0); } |
| | e GE e { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) >= 0); } |
| | e '>' e { sp--; mpz_set_ui (sp, mpz_cmp (sp, sp+1) > 0); } |
| |
| | e LAND e { sp--; mpz_set_ui (sp, mpz_sgn (sp) && mpz_sgn (sp+1)); } |
| | e LOR e { sp--; mpz_set_ui (sp, mpz_sgn (sp) || mpz_sgn (sp+1)); } |
| |
| | ABS '(' e ')' { mpz_abs (sp, sp); } |
| | BIN '(' e ',' e ')' { sp--; CHECK_UI ("Binomial base", sp+1); |
| mpz_bin_ui (sp, sp, mpz_get_ui (sp+1)); } |
| | FIB '(' e ')' { CHECK_UI ("Fibonacci", sp); |
| mpz_fib_ui (sp, mpz_get_ui (sp)); } |
| | GCD '(' gcdlist ')' /* value on stack */ |
| | KRON '(' e ',' e ')' { sp--; mpz_set_si (sp, |
| mpz_kronecker (sp, sp+1)); } |
| | LCM '(' lcmlist ')' /* value on stack */ |
| | LUCNUM '(' e ')' { CHECK_UI ("Lucas number", sp); |
| mpz_lucnum_ui (sp, mpz_get_ui (sp)); } |
| | NEXTPRIME '(' e ')' { mpz_nextprime (sp, sp); } |
| | POWM '(' e ',' e ',' e ')' { sp -= 2; mpz_powm (sp, sp, sp+1, sp+2); } |
| | ROOT '(' e ',' e ')' { sp--; CHECK_UI ("Nth-root", sp+1); |
| mpz_root (sp, sp, mpz_get_ui (sp+1)); } |
| | SQRT '(' e ')' { mpz_sqrt (sp, sp); } |
| |
| | VARIABLE { |
| sp++; |
| CHECK_OVERFLOW (); |
| CHECK_VARIABLE ($1); |
| mpz_set (sp, variable[$1]); |
| } |
| | NUMBER { |
| sp++; |
| CHECK_OVERFLOW (); |
| if (mpz_set_str (sp, $1, ibase) != 0) |
| { |
| fprintf (stderr, "Invalid number: %s\n", $1); |
| YYERROR; |
| } |
| }; |
| |
| gcdlist: |
| e /* value on stack */ |
| | gcdlist ',' e { sp--; mpz_gcd (sp, sp, sp+1); }; |
| |
| lcmlist: |
| e /* value on stack */ |
| | lcmlist ',' e { sp--; mpz_lcm (sp, sp, sp+1); }; |
| |
| %% |
| |
| yyerror (char *s) |
| { |
| fprintf (stderr, "%s\n", s); |
| } |
| |
| int calc_option_readline = -1; |
| |
| int |
| main (int argc, char *argv[]) |
| { |
| int i; |
| |
| for (i = 1; i < argc; i++) |
| { |
| if (strcmp (argv[i], "--readline") == 0) |
| calc_option_readline = 1; |
| else if (strcmp (argv[i], "--noreadline") == 0) |
| calc_option_readline = 0; |
| else if (strcmp (argv[i], "--help") == 0) |
| { |
| printf ("Usage: calc [--option]...\n"); |
| printf (" --readline use readline\n"); |
| printf (" --noreadline don't use readline\n"); |
| printf (" --help this message\n"); |
| printf ("Readline is only available when compiled in,\n"); |
| printf ("and in that case it's the default on a tty.\n"); |
| exit (0); |
| } |
| else |
| { |
| fprintf (stderr, "Unrecognised option: %s\n", argv[i]); |
| exit (1); |
| } |
| } |
| |
| #if WITH_READLINE |
| calc_init_readline (); |
| #else |
| if (calc_option_readline == 1) |
| { |
| fprintf (stderr, "Readline support not available\n"); |
| exit (1); |
| } |
| #endif |
| |
| for (i = 0; i < numberof (variable); i++) |
| mpz_init (variable[i]); |
| |
| for (i = 0; i < numberof (stack); i++) |
| mpz_init (stack[i]); |
| |
| return yyparse (); |
| } |