blob: f0eaf04986b657e9d7b37735579bd799ccf08c6b [file] [log] [blame]
#include "aos/flatbuffers/base.h"
#include <stddef.h>
#include <algorithm>
#include "gtest/gtest.h"
namespace aos::fbs::testing {
// Tests that PaddedSize() behaves as expected.
TEST(BaseTest, PaddedSize) {
EXPECT_EQ(0, PaddedSize(0, 4));
EXPECT_EQ(4, PaddedSize(4, 4));
EXPECT_EQ(8, PaddedSize(5, 4));
EXPECT_EQ(8, PaddedSize(6, 4));
EXPECT_EQ(8, PaddedSize(7, 4));
}
inline constexpr size_t kDefaultSize = 16;
template <typename T>
class AllocatorTest : public ::testing::Test {
protected:
AllocatorTest() : allocator_(std::make_unique<T>()) {}
std::vector<uint8_t> buffer_;
// unique_ptr so that we can destroy the allocator at will.
std::unique_ptr<T> allocator_;
};
template <>
AllocatorTest<SpanAllocator>::AllocatorTest()
: buffer_(kDefaultSize),
allocator_(std::make_unique<SpanAllocator>(
std::span<uint8_t>{buffer_.data(), buffer_.size()})) {}
using AllocatorTypes = ::testing::Types<SpanAllocator, VectorAllocator>;
TYPED_TEST_SUITE(AllocatorTest, AllocatorTypes);
// Tests that we can create and not use a VectorAllocator.
TYPED_TEST(AllocatorTest, UnusedAllocator) {}
// Tests that a simple allocate works.
TYPED_TEST(AllocatorTest, BasicAllocate) {
std::span<uint8_t> span =
this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value();
ASSERT_EQ(kDefaultSize, span.size());
// We set SetZero::kYes; it should be zero-initialized.
EXPECT_EQ(kDefaultSize, std::count(span.begin(), span.end(), 0));
this->allocator_->Deallocate(span);
}
// Tests that we can insert bytes into an arbitrary spot in the buffer.
TYPED_TEST(AllocatorTest, InsertBytes) {
const size_t half_size = kDefaultSize / 2;
std::span<uint8_t> span =
this->allocator_->Allocate(half_size, 4, SetZero::kYes).value();
ASSERT_EQ(half_size, span.size());
// Set the span with some sentinel values so that we can detect that the
// insertion occurred correctly.
for (size_t ii = 0; ii < span.size(); ++ii) {
span[ii] = ii + 1;
}
// Insert new bytes such that one old byte will still be at the start.
span = this->allocator_
->InsertBytes(span.data() + 1u, half_size, 0, SetZero::kYes)
.value();
ASSERT_EQ(kDefaultSize, span.size());
size_t index = 0;
EXPECT_EQ(1u, span[index]);
index++;
for (; index < half_size + 1u; ++index) {
EXPECT_EQ(0u, span[index]);
}
for (; index < span.size(); ++index) {
EXPECT_EQ(index - half_size + 1, span[index]);
}
this->allocator_->Deallocate(span);
}
// Tests that we can remove bytes from an arbitrary spot in the buffer.
TYPED_TEST(AllocatorTest, RemoveBytes) {
const size_t half_size = kDefaultSize / 2;
std::span<uint8_t> span =
this->allocator_->Allocate(kDefaultSize, 4, SetZero::kYes).value();
ASSERT_EQ(kDefaultSize, span.size());
// Set the span with some sentinel values so that we can detect that the
// removal occurred correctly.
for (size_t ii = 0; ii < span.size(); ++ii) {
span[ii] = ii + 1;
}
// Remove bytes such that one old byte will remain at the start, and a chunk
// of 8 bytes will be cut out after that..
span = this->allocator_->RemoveBytes(span.subspan(1, half_size));
ASSERT_EQ(half_size, span.size());
size_t index = 0;
EXPECT_EQ(1u, span[index]);
index++;
for (; index < span.size(); ++index) {
EXPECT_EQ(index + half_size + 1, span[index]);
}
this->allocator_->Deallocate(span);
}
// Tests that if we fail to deallocate that we fail during destruction.
TYPED_TEST(AllocatorTest, NoDeallocate) {
EXPECT_DEATH(
{
EXPECT_EQ(
4, this->allocator_->Allocate(4, 4, SetZero::kYes).value().size());
this->allocator_.reset();
},
"Must deallocate");
}
// Tests that if we never allocate that we cannot deallocate.
TYPED_TEST(AllocatorTest, NoAllocateThenDeallocate) {
EXPECT_DEATH(this->allocator_->Deallocate(std::span<uint8_t>()),
"prior allocation");
}
// Tests that if we attempt to allocate more than the backing span allows that
// we correctly return an empty span.
TEST(SpanAllocatorTest, OverAllocate) {
std::vector<uint8_t> buffer(kDefaultSize);
SpanAllocator allocator({buffer.data(), buffer.size()});
EXPECT_FALSE(
allocator.Allocate(kDefaultSize + 1u, 0, SetZero::kYes).has_value());
}
// Tests that if we attempt to insert more than the backing span allows that
// we correctly return an empty span.
TEST(SpanAllocatorTest, OverInsert) {
std::vector<uint8_t> buffer(kDefaultSize);
SpanAllocator allocator({buffer.data(), buffer.size()});
std::span<uint8_t> span =
allocator.Allocate(kDefaultSize, 0, SetZero::kYes).value();
EXPECT_EQ(kDefaultSize, span.size());
EXPECT_FALSE(
allocator.InsertBytes(span.data(), 1u, 0, SetZero::kYes).has_value());
allocator.Deallocate(span);
}
// Because we really aren't meant to instantiate ResizeableObject's directly (if
// nothing else it has virtual member functions), define a testing
// implementation.
class TestResizeableObject : public ResizeableObject {
public:
TestResizeableObject(std::span<uint8_t> buffer, ResizeableObject *parent)
: ResizeableObject(buffer, parent) {}
TestResizeableObject(std::span<uint8_t> buffer, Allocator *allocator)
: ResizeableObject(buffer, allocator) {}
virtual ~TestResizeableObject() {}
using ResizeableObject::SubObject;
bool InsertBytes(void *insertion_point, size_t bytes) {
return ResizeableObject::InsertBytes(insertion_point, bytes, SetZero::kYes);
}
TestResizeableObject(TestResizeableObject &&) = default;
struct TestObject {
uoffset_t inline_entry_offset;
std::unique_ptr<TestResizeableObject> object;
size_t absolute_offset;
};
// Adds a new object of the requested size.
void AddEntry(uoffset_t inline_entry_offset, size_t absolute_offset,
size_t buffer_size, bool set_object) {
*reinterpret_cast<uoffset_t *>(buffer_.data() + inline_entry_offset) =
set_object ? (absolute_offset - inline_entry_offset) : 0;
objects_.emplace_back(
TestObject{inline_entry_offset, nullptr, absolute_offset});
if (set_object) {
objects_.back().object = std::make_unique<TestResizeableObject>(
buffer().subspan(absolute_offset, buffer_size), this);
}
}
size_t NumberOfSubObjects() const override { return objects_.size(); }
SubObject GetSubObject(size_t index) override {
TestObject &subobject = objects_.at(index);
return {reinterpret_cast<uoffset_t *>(buffer_.data() +
subobject.inline_entry_offset),
subobject.object.get(), &subobject.absolute_offset};
}
TestObject &GetObject(size_t index) { return objects_.at(index); }
size_t Alignment() const override { return 64; }
size_t AbsoluteOffsetOffset() const override { return 0; }
private:
std::vector<TestObject> objects_;
};
class ResizeableObjectTest : public ::testing::Test {
protected:
static constexpr size_t kInitialSize = 128;
ResizeableObjectTest()
: object_(allocator_.Allocate(kInitialSize, 4, SetZero::kYes).value(),
&allocator_) {}
~ResizeableObjectTest() { allocator_.Deallocate(object_.buffer()); }
VectorAllocator allocator_;
TestResizeableObject object_;
};
// Tests that if we created an object and then do nothing with it that nothing
// untoward happens.
TEST_F(ResizeableObjectTest, DoNothing) {}
// Test that when we move the ResizeableObject we clear the reference to the old
// buffer.
TEST_F(ResizeableObjectTest, Move) {
TestResizeableObject target_object = std::move(object_);
ASSERT_EQ(0u, object_.buffer().size());
ASSERT_EQ(kInitialSize, target_object.buffer().size());
}
// Tests the pathways for resizing a nested ResizeableObject works.
TEST_F(ResizeableObjectTest, ResizeNested) {
constexpr size_t kAbsoluteOffset = 64;
object_.AddEntry(4, kAbsoluteOffset, 64, true);
TestResizeableObject *subobject = object_.GetObject(0).object.get();
object_.AddEntry(0, kAbsoluteOffset, 64, false);
EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry);
EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
EXPECT_EQ(64, object_.GetObject(0).object->buffer().data() -
object_.buffer().data());
constexpr size_t kInsertBytes = 5;
// The insert should succeed.
ASSERT_TRUE(
subobject->InsertBytes(subobject->buffer().data() + 1u, kInsertBytes));
// We should now observe the size of the buffers increasing, but the start
// _not_ moving.
// We should've rounded the insert up to the alignment we areusing (64 bytes).
EXPECT_EQ(kInitialSize + 64, object_.buffer().size());
EXPECT_EQ(128, subobject->buffer().size());
EXPECT_EQ(60, *object_.GetSubObject(0).inline_entry);
EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
EXPECT_EQ(kAbsoluteOffset, object_.GetObject(0).absolute_offset);
EXPECT_EQ(kAbsoluteOffset, object_.GetObject(1).absolute_offset);
// And next we insert before the subobjects, so that we can see their offsets
// shift. The insert should succeed.
ASSERT_TRUE(object_.InsertBytes(subobject->buffer().data(), kInsertBytes));
EXPECT_EQ(kInitialSize + 2 * 64, object_.buffer().size());
EXPECT_EQ(128, subobject->buffer().size());
EXPECT_EQ(60 + 64, *object_.GetSubObject(0).inline_entry);
// The unpopulated object's inline entry should not have changed since
// it was zero.
EXPECT_EQ(0, *object_.GetSubObject(1).inline_entry);
EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(0).absolute_offset);
EXPECT_EQ(kAbsoluteOffset + 64, object_.GetObject(1).absolute_offset);
}
} // namespace aos::fbs::testing