blob: 35ad8d204cd00b461e9b182267c7f85a40aa848b [file] [log] [blame]
#include <stdio.h>
#include <memory>
#include "aos/common/util/phased_loop.h"
#include "aos/common/time.h"
#include "aos/common/util/trapezoid_profile.h"
#include "aos/common/logging/logging.h"
#include "aos/common/logging/queue_logging.h"
#include "y2015_bot3/autonomous/auto.q.h"
#include "y2015_bot3/actors/drivetrain_actor.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.h"
#include "y2015_bot3/control_loops/elevator/elevator.q.h"
#include "y2015_bot3/control_loops/intake/intake.q.h"
#include "y2015_bot3/control_loops/drivetrain/drivetrain_base.h"
using ::frc971::control_loops::drivetrain_queue;
using ::y2015_bot3::control_loops::intake_queue;
using ::y2015_bot3::control_loops::elevator_queue;
namespace y2015_bot3 {
namespace autonomous {
struct ProfileParams {
double velocity;
double acceleration;
};
using ::aos::monotonic_clock;
namespace actors = ::frc971::actors;
namespace chrono = ::std::chrono;
const ProfileParams kFastDrive = {3.0, 3.5};
const ProfileParams kLastDrive = {4.0, 4.0};
const ProfileParams kStackingFirstTurn = {3.0, 7.0};
const ProfileParams kFinalDriveTurn = {3.0, 5.0};
const ProfileParams kSlowFirstDriveTurn = {0.75, 1.5};
const ProfileParams kSlowSecondDriveTurn = {0.6, 1.5};
const ProfileParams kCanPickupDrive = {1.3, 3.0};
static double left_initial_position, right_initial_position;
bool ShouldExitAuto() {
::y2015_bot3::autonomous::autonomous.FetchLatest();
bool ans = !::y2015_bot3::autonomous::autonomous->run_auto;
if (ans) {
LOG(INFO, "Time to exit auto mode\n");
}
return ans;
}
void ResetDrivetrain() {
LOG(INFO, "resetting the drivetrain\n");
drivetrain_queue.goal.MakeWithBuilder()
.control_loop_driving(false)
.steering(0.0)
.throttle(0.0)
.left_goal(left_initial_position)
.left_velocity_goal(0)
.right_goal(right_initial_position)
.right_velocity_goal(0)
.Send();
}
void InitializeEncoders() {
drivetrain_queue.status.FetchAnother();
left_initial_position = drivetrain_queue.status->estimated_left_position;
right_initial_position = drivetrain_queue.status->estimated_right_position;
}
::std::unique_ptr< ::frc971::actors::DrivetrainAction> SetDriveGoal(
double distance, const ProfileParams drive_params, double theta,
const ProfileParams &turn_params) {
LOG(INFO, "Driving to %f\n", distance);
actors::DrivetrainActionParams params;
params.left_initial_position = left_initial_position;
params.right_initial_position = right_initial_position;
params.y_offset = distance;
params.theta_offset = theta;
params.maximum_turn_acceleration = turn_params.acceleration;
params.maximum_turn_velocity = turn_params.velocity;
params.maximum_velocity = drive_params.velocity;
params.maximum_acceleration = drive_params.acceleration;
auto drivetrain_action = actors::MakeDrivetrainAction(params);
drivetrain_action->Start();
left_initial_position +=
distance - theta * control_loops::drivetrain::kDrivetrainTurnWidth / 2.0;
right_initial_position +=
distance + theta * control_loops::drivetrain::kDrivetrainTurnWidth / 2.0;
return ::std::move(drivetrain_action);
}
void WaitUntilDoneOrCanceled(
::std::unique_ptr<aos::common::actions::Action> action) {
if (!action) {
LOG(ERROR, "No action, not waiting\n");
return;
}
::aos::time::PhasedLoop phased_loop(chrono::milliseconds(5),
chrono::microseconds(2500));
while (true) {
phased_loop.SleepUntilNext();
// Poll the running bit and auto done bits.
if (!action->Running() || ShouldExitAuto()) {
return;
}
}
}
void WaitUntilNear(double distance) {
while (true) {
if (ShouldExitAuto()) return;
drivetrain_queue.status.FetchAnother();
double left_error =
::std::abs(left_initial_position -
drivetrain_queue.status->estimated_left_position);
double right_error =
::std::abs(right_initial_position -
drivetrain_queue.status->estimated_right_position);
const double kPositionThreshold = 0.05 + distance;
if (right_error < kPositionThreshold && left_error < kPositionThreshold) {
LOG(INFO, "At the goal\n");
return;
}
}
}
void GrabberForTime(double voltage, monotonic_clock::duration wait_time) {
monotonic_clock::time_point monotonic_now = monotonic_clock::now();
monotonic_clock::time_point end_time = monotonic_now + wait_time;
LOG(INFO, "Starting to grab at %f for %f seconds\n", voltage,
chrono::duration_cast<chrono::duration<double>>(wait_time).count());
::aos::time::PhasedLoop phased_loop(chrono::milliseconds(5),
chrono::microseconds(2500));
while (true) {
autonomous::can_grabber_control.MakeWithBuilder()
.can_grabber_voltage(voltage).can_grabbers(false).Send();
// Poll the running bit and auto done bits.
if (ShouldExitAuto()) {
return;
}
if (monotonic_clock::now() > end_time) {
LOG(INFO, "Done grabbing\n");
return;
}
phased_loop.SleepUntilNext();
}
}
// Auto methods.
void CanGrabberAuto() {
ResetDrivetrain();
// Launch can grabbers.
// GrabberForTime(12.0, chrono::milliseconds(260));
GrabberForTime(6.0, chrono::milliseconds(400));
if (ShouldExitAuto()) return;
InitializeEncoders();
ResetDrivetrain();
if (ShouldExitAuto()) return;
// Send our intake goals.
if (!intake_queue.goal.MakeWithBuilder().movement(0.0).claw_closed(true)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
{
auto new_elevator_goal = elevator_queue.goal.MakeMessage();
new_elevator_goal->max_velocity = 0.0;
new_elevator_goal->max_acceleration = 0.0;
new_elevator_goal->height = 0.030;
new_elevator_goal->velocity = 0.0;
new_elevator_goal->passive_support = true;
new_elevator_goal->can_support = false;
if (new_elevator_goal.Send()) {
LOG(DEBUG, "sending goals: elevator: %f\n", 0.03);
} else {
LOG(ERROR, "Sending elevator goal failed.\n");
}
}
const double kMoveBackDistance = 1.75;
//const double kMoveBackDistance = 0.0;
// Drive backwards, and pulse the can grabbers again to tip the cans.
drivetrain_queue.goal.MakeWithBuilder()
.control_loop_driving(true)
.steering(0.0)
.throttle(0.0)
.left_goal(left_initial_position + kMoveBackDistance)
.left_velocity_goal(0)
.right_goal(right_initial_position + kMoveBackDistance)
.right_velocity_goal(0)
.Send();
GrabberForTime(12.0, chrono::milliseconds(20));
if (ShouldExitAuto()) return;
// We shouldn't need as much power at this point, so lower the can grabber
// voltages to avoid damaging the motors due to stalling.
GrabberForTime(4.0, chrono::milliseconds(750));
if (ShouldExitAuto()) return;
GrabberForTime(-3.0, chrono::milliseconds(250));
if (ShouldExitAuto()) return;
GrabberForTime(-12.0, chrono::milliseconds(1000));
if (ShouldExitAuto()) return;
GrabberForTime(-3.0, chrono::milliseconds(12000));
}
const ProfileParams kElevatorProfile = {1.0, 5.0};
static double elevator_goal_height = 0.0;
void SetElevatorHeight(double height, const ProfileParams params,
bool can_open = false, bool support_open = true) {
// Send our elevator goals, with limits set in the profile params.
auto new_elevator_goal = elevator_queue.goal.MakeMessage();
elevator_goal_height = height;
new_elevator_goal->max_velocity = params.velocity;
new_elevator_goal->max_acceleration = params.acceleration;
new_elevator_goal->height = elevator_goal_height;
new_elevator_goal->velocity = 0.0;
new_elevator_goal->passive_support = support_open;
new_elevator_goal->can_support = can_open;
if (new_elevator_goal.Send()) {
LOG(DEBUG, "sending goals: elevator: %f\n", elevator_goal_height);
} else {
LOG(ERROR, "Sending elevator goal failed.\n");
}
}
void WaitForElevator() {
while (true) {
if (ShouldExitAuto()) return;
control_loops::elevator_queue.status.FetchAnother();
constexpr double kProfileError = 1e-5;
constexpr double kEpsilon = 0.03;
if (::std::abs(control_loops::elevator_queue.status->goal_height -
elevator_goal_height) <
kProfileError &&
::std::abs(control_loops::elevator_queue.status->goal_velocity) <
kProfileError) {
LOG(INFO, "Profile done.\n");
if (::std::abs(control_loops::elevator_queue.status->height -
elevator_goal_height) <
kEpsilon) {
LOG(INFO, "Near goal, done.\n");
return;
}
}
}
}
void WaitUntilElevatorBelow(double height) {
while (true) {
if (ShouldExitAuto()) return;
control_loops::elevator_queue.status.FetchAnother();
if (control_loops::elevator_queue.status->goal_height < height) {
LOG(INFO, "Profile below.\n");
if (control_loops::elevator_queue.status->height < height) {
LOG(INFO, "Elevator below goal, done.\n");
return;
}
}
}
}
void WaitUntilElevatorAbove(double height) {
while (true) {
if (ShouldExitAuto()) return;
control_loops::elevator_queue.status.FetchAnother();
if (control_loops::elevator_queue.status->goal_height > height) {
LOG(INFO, "Profile above.\n");
if (control_loops::elevator_queue.status->height > height) {
LOG(INFO, "Elevator above goal, done.\n");
return;
}
}
}
}
void LiftTote(double final_height = 0.48) {
// Send our intake goals.
if (!intake_queue.goal.MakeWithBuilder().movement(10.0).claw_closed(true)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
while (true) {
elevator_queue.status.FetchAnother();
if (!elevator_queue.status.get()) {
LOG(ERROR, "Got no elevator status packet.\n");
}
if (ShouldExitAuto()) return;
if (elevator_queue.status->has_tote) {
break;
}
}
if (!intake_queue.goal.MakeWithBuilder().movement(0.0).claw_closed(true)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
SetElevatorHeight(0.02, kElevatorProfile, false, false);
WaitUntilElevatorBelow(0.05);
if (ShouldExitAuto()) return;
SetElevatorHeight(final_height, kElevatorProfile, false, false);
}
void TripleCanAuto() {
monotonic_clock::time_point start_time = monotonic_clock::now();
::std::unique_ptr<::frc971::actors::DrivetrainAction> drive;
InitializeEncoders();
ResetDrivetrain();
SetElevatorHeight(0.03, kElevatorProfile, false, true);
LiftTote();
if (ShouldExitAuto()) return;
// The amount to turn out for going around the first can.
const double kFirstTurn = 0.5;
drive = SetDriveGoal(0.0, kFastDrive, kFirstTurn, kStackingFirstTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive = SetDriveGoal(2.0, kFastDrive, -kFirstTurn * 2.0, kSlowFirstDriveTurn);
WaitUntilNear(1.5);
if (ShouldExitAuto()) return;
if (!intake_queue.goal.MakeWithBuilder().movement(0.0).claw_closed(false)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive = SetDriveGoal(0.0, kFastDrive, kFirstTurn, kStackingFirstTurn);
LiftTote();
if (ShouldExitAuto()) return;
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
// The amount to turn out for going around the second can.
const double kSecondTurn = 0.35;
const double kSecondTurnExtraOnSecond = 0.10;
drive = SetDriveGoal(0.0, kFastDrive, kSecondTurn, kStackingFirstTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive =
SetDriveGoal(2.05, kFastDrive, -kSecondTurn * 2.0 - kSecondTurnExtraOnSecond, kSlowSecondDriveTurn);
WaitUntilNear(1.5);
if (!intake_queue.goal.MakeWithBuilder().movement(0.0).claw_closed(false)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive = SetDriveGoal(0.0, kFastDrive, kSecondTurn + kSecondTurnExtraOnSecond, kStackingFirstTurn);
LiftTote(0.18);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive = SetDriveGoal(0.3, kFastDrive, -1.7, kFinalDriveTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
if (!intake_queue.goal.MakeWithBuilder().movement(0.0).claw_closed(false)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive = SetDriveGoal(2.95, kLastDrive, 0.0, kFinalDriveTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
SetElevatorHeight(0.03, kElevatorProfile, true, true);
WaitForElevator();
if (ShouldExitAuto()) return;
drive = SetDriveGoal(-2.25, kFastDrive, 0.0, kFinalDriveTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
drive = SetDriveGoal(0.0, kFastDrive, 1.80, kFinalDriveTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
if (!intake_queue.goal.MakeWithBuilder().movement(10.0).claw_closed(true)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
SetElevatorHeight(0.03, kElevatorProfile, false, true);
drive = SetDriveGoal(1.0, kCanPickupDrive, 0.0, kFinalDriveTurn);
WaitUntilDoneOrCanceled(::std::move(drive));
if (ShouldExitAuto()) return;
SetElevatorHeight(0.03, kElevatorProfile, true, true);
while (true) {
elevator_queue.status.FetchAnother();
if (!elevator_queue.status.get()) {
LOG(ERROR, "Got no elevator status packet.\n");
}
if (ShouldExitAuto()) return;
if (elevator_queue.status->has_tote) {
LOG(INFO, "Got the tote!\n");
break;
}
if (monotonic_clock::now() > chrono::seconds(15) + start_time) {
LOG(INFO, "Out of time\n");
break;
}
}
monotonic_clock::time_point end_time = monotonic_clock::now();
LOG(INFO, "Ended auto with %f to spare\n",
chrono::duration_cast<chrono::duration<double>>(chrono::seconds(15) -
(end_time - start_time))
.count());
if (!intake_queue.goal.MakeWithBuilder().movement(0.0).claw_closed(true)
.Send()) {
LOG(ERROR, "Sending intake goal failed.\n");
}
}
void HandleAuto() {
monotonic_clock::time_point start_time = monotonic_clock::now();
LOG(INFO, "Starting auto mode at %f\n",
chrono::duration_cast<chrono::duration<double>>(
start_time.time_since_epoch())
.count());
// TODO(comran): Add various options for different autos down below.
//CanGrabberAuto();
TripleCanAuto();
}
} // namespace autonomous
} // namespace y2015_bot3