blob: f364d560531f35f342660cc6eb2c79b410ce1094 [file] [log] [blame]
#include "frc971/wpilib/ADIS16448.h"
#include "frc971/wpilib/ahal/InterruptableSensorBase.h"
#undef ERROR
#include <inttypes.h>
#include <math.h>
#include <chrono>
#include "aos/init.h"
#include "aos/robot_state/robot_state_generated.h"
#include "aos/time/time.h"
#include "frc971/wpilib/imu_generated.h"
#include "frc971/zeroing/averager.h"
namespace frc971 {
namespace wpilib {
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
template <uint8_t size>
bool ADIS16448::DoTransaction(uint8_t to_send[size], uint8_t to_receive[size]) {
rx_clearer_.ClearRxFifo();
switch (spi_->Transaction(to_send, to_receive, size)) {
case -1:
AOS_LOG(INFO, "SPI::Transaction of %zd bytes failed\n", size);
return false;
case size:
if (dummy_spi_) {
uint8_t dummy_send, dummy_receive;
dummy_spi_->Transaction(&dummy_send, &dummy_receive, 1);
}
return true;
default:
AOS_LOG(FATAL, "SPI::Transaction returned something weird\n");
}
}
namespace {
// Addresses pulled out of the documentation.
constexpr uint8_t kMscCtrlAddress = 0x34;
constexpr uint8_t kSmplPrdAddress = 0x36;
constexpr uint8_t kDiagStatAddress = 0x3C;
constexpr uint8_t kGlobalReadAddress = 0x3E;
constexpr uint8_t kLotId1Address = 0x52;
constexpr uint8_t kLotId2Address = 0x54;
constexpr uint8_t kProdIdAddress = 0x56;
constexpr uint8_t kSerialNumberAddress = 0x58;
// degree/second/LSB for the gyros.
constexpr double kGyroLsbDegreeSecond = 1.0 / 25.0;
// G/LSB for the accelerometers.
constexpr double kAccelerometerLsbG = 1.0 / 1200.0;
// gauss/LSB for the magnetometers.
constexpr double kMagnetometerLsbGauss =
1.0 / (7.0 / 1000.0) /* mgauss to gauss */;
// bar/LSB for the barometer.
constexpr double kBarometerLsbPascal = 0.02 * 100;
// degree/LSB C for the temperature sensor.
constexpr double kTemperatureLsbDegree = 0.07386;
// Degrees C corresponding to 0 for the temperature sensor.
constexpr double kTemperatureZero = 31;
// From somebody online who says this works with the sensor. I don't feel like
// re-deriving this, and I can't find what all the CRC parameters are supposed
// to be.
const uint16_t kCrcTable[256] = {
0x0000, 0x17CE, 0x0FDF, 0x1811, 0x1FBE, 0x0870, 0x1061, 0x07AF, 0x1F3F,
0x08F1, 0x10E0, 0x072E, 0x0081, 0x174F, 0x0F5E, 0x1890, 0x1E3D, 0x09F3,
0x11E2, 0x062C, 0x0183, 0x164D, 0x0E5C, 0x1992, 0x0102, 0x16CC, 0x0EDD,
0x1913, 0x1EBC, 0x0972, 0x1163, 0x06AD, 0x1C39, 0x0BF7, 0x13E6, 0x0428,
0x0387, 0x1449, 0x0C58, 0x1B96, 0x0306, 0x14C8, 0x0CD9, 0x1B17, 0x1CB8,
0x0B76, 0x1367, 0x04A9, 0x0204, 0x15CA, 0x0DDB, 0x1A15, 0x1DBA, 0x0A74,
0x1265, 0x05AB, 0x1D3B, 0x0AF5, 0x12E4, 0x052A, 0x0285, 0x154B, 0x0D5A,
0x1A94, 0x1831, 0x0FFF, 0x17EE, 0x0020, 0x078F, 0x1041, 0x0850, 0x1F9E,
0x070E, 0x10C0, 0x08D1, 0x1F1F, 0x18B0, 0x0F7E, 0x176F, 0x00A1, 0x060C,
0x11C2, 0x09D3, 0x1E1D, 0x19B2, 0x0E7C, 0x166D, 0x01A3, 0x1933, 0x0EFD,
0x16EC, 0x0122, 0x068D, 0x1143, 0x0952, 0x1E9C, 0x0408, 0x13C6, 0x0BD7,
0x1C19, 0x1BB6, 0x0C78, 0x1469, 0x03A7, 0x1B37, 0x0CF9, 0x14E8, 0x0326,
0x0489, 0x1347, 0x0B56, 0x1C98, 0x1A35, 0x0DFB, 0x15EA, 0x0224, 0x058B,
0x1245, 0x0A54, 0x1D9A, 0x050A, 0x12C4, 0x0AD5, 0x1D1B, 0x1AB4, 0x0D7A,
0x156B, 0x02A5, 0x1021, 0x07EF, 0x1FFE, 0x0830, 0x0F9F, 0x1851, 0x0040,
0x178E, 0x0F1E, 0x18D0, 0x00C1, 0x170F, 0x10A0, 0x076E, 0x1F7F, 0x08B1,
0x0E1C, 0x19D2, 0x01C3, 0x160D, 0x11A2, 0x066C, 0x1E7D, 0x09B3, 0x1123,
0x06ED, 0x1EFC, 0x0932, 0x0E9D, 0x1953, 0x0142, 0x168C, 0x0C18, 0x1BD6,
0x03C7, 0x1409, 0x13A6, 0x0468, 0x1C79, 0x0BB7, 0x1327, 0x04E9, 0x1CF8,
0x0B36, 0x0C99, 0x1B57, 0x0346, 0x1488, 0x1225, 0x05EB, 0x1DFA, 0x0A34,
0x0D9B, 0x1A55, 0x0244, 0x158A, 0x0D1A, 0x1AD4, 0x02C5, 0x150B, 0x12A4,
0x056A, 0x1D7B, 0x0AB5, 0x0810, 0x1FDE, 0x07CF, 0x1001, 0x17AE, 0x0060,
0x1871, 0x0FBF, 0x172F, 0x00E1, 0x18F0, 0x0F3E, 0x0891, 0x1F5F, 0x074E,
0x1080, 0x162D, 0x01E3, 0x19F2, 0x0E3C, 0x0993, 0x1E5D, 0x064C, 0x1182,
0x0912, 0x1EDC, 0x06CD, 0x1103, 0x16AC, 0x0162, 0x1973, 0x0EBD, 0x1429,
0x03E7, 0x1BF6, 0x0C38, 0x0B97, 0x1C59, 0x0448, 0x1386, 0x0B16, 0x1CD8,
0x04C9, 0x1307, 0x14A8, 0x0366, 0x1B77, 0x0CB9, 0x0A14, 0x1DDA, 0x05CB,
0x1205, 0x15AA, 0x0264, 0x1A75, 0x0DBB, 0x152B, 0x02E5, 0x1AF4, 0x0D3A,
0x0A95, 0x1D5B, 0x054A, 0x1284};
uint16_t CalculateCrc(const uint8_t *data, size_t data_length) {
uint16_t crc = 0xFFFF;
uint16_t byte;
while (data_length--) {
// Compute lower byte CRC first.
byte = data[1];
crc = (crc >> 8) ^ kCrcTable[(crc & 0x00FF) ^ byte];
// Compute upper byte of CRC.
byte = data[0];
crc = (crc >> 8) ^ kCrcTable[(crc & 0x00FF) ^ byte];
data += 2;
}
crc = ~crc; // Compute complement of CRC
return static_cast<uint16_t>(
(crc << 8) | (crc >> 8)); // Perform byte swap prior to returning CRC;
}
} // namespace
ADIS16448::ADIS16448(::aos::EventLoop *event_loop, frc::SPI::Port port,
frc::DigitalInput *dio1)
: event_loop_(event_loop),
robot_state_fetcher_(event_loop_->MakeFetcher<::aos::RobotState>("/aos")),
imu_values_sender_(
event_loop_->MakeSender<::frc971::IMUValues>("/drivetrain")),
spi_(new frc::SPI(port)),
dio1_(dio1) {
// 1MHz is the maximum supported for burst reads, but we
// want to go slower to hopefully make it more reliable.
// Note that the roboRIO's minimum supported clock rate appears to be
// 0.781MHz, so that's what this actually does.
spi_->SetClockRate(1e5);
spi_->SetChipSelectActiveLow();
spi_->SetClockActiveLow();
spi_->SetSampleDataOnFalling();
spi_->SetMSBFirst();
dio1_->RequestInterrupts();
dio1_->SetUpSourceEdge(true, false);
// NI's SPI driver defaults to SCHED_OTHER. Find it's PID with ps, and change
// it to a RT priority of 33.
AOS_PCHECK(
system("ps -ef | grep '\\[spi0\\]' | awk '{print $1}' | xargs chrt -f -p "
"33") == 0);
event_loop_->set_name("IMU");
event_loop_->SetRuntimeRealtimePriority(33);
event_loop_->OnRun([this]() { DoRun(); });
}
void ADIS16448::SetDummySPI(frc::SPI::Port port) {
dummy_spi_.reset(new frc::SPI(port));
// Pick the same settings here in case the roboRIO decides to try something
// stupid when switching.
if (dummy_spi_) {
dummy_spi_->SetClockRate(1e5);
dummy_spi_->SetChipSelectActiveLow();
dummy_spi_->SetClockActiveLow();
dummy_spi_->SetSampleDataOnFalling();
dummy_spi_->SetMSBFirst();
}
}
void ADIS16448::InitializeUntilSuccessful() {
while (event_loop_->is_running() && !Initialize()) {
if (reset_) {
reset_->Set(false);
// Datasheet says this needs to be at least 10 us long, so 10 ms is
// plenty.
::std::this_thread::sleep_for(::std::chrono::milliseconds(10));
reset_->Set(true);
// Datasheet says this takes 90 ms typically, and we want to give it
// plenty of margin.
::std::this_thread::sleep_for(::std::chrono::milliseconds(150));
} else {
::std::this_thread::sleep_for(::std::chrono::milliseconds(50));
}
}
AOS_LOG(INFO, "IMU initialized successfully\n");
}
void ADIS16448::DoRun() {
InitializeUntilSuccessful();
// Rounded to approximate the 204.8 Hz.
constexpr size_t kImuSendRate = 205;
zeroing::Averager<double, 6 * kImuSendRate> average_gyro_x;
zeroing::Averager<double, 6 * kImuSendRate> average_gyro_y;
zeroing::Averager<double, 6 * kImuSendRate> average_gyro_z;
bool got_an_interrupt = false;
while (event_loop_->is_running()) {
{
// Wait for an interrupt. (This prevents us from going to sleep in the
// event loop like we normally would)
const frc::InterruptableSensorBase::WaitResult result =
dio1_->WaitForInterrupt(0.1, !got_an_interrupt);
if (result == frc::InterruptableSensorBase::kTimeout) {
AOS_LOG(WARNING, "IMU read timed out\n");
InitializeUntilSuccessful();
continue;
}
}
got_an_interrupt = true;
const monotonic_clock::time_point read_time = monotonic_clock::now();
uint8_t to_send[2 * 14], to_receive[2 * 14];
memset(&to_send[0], 0, sizeof(to_send));
to_send[0] = kGlobalReadAddress;
if (!DoTransaction<2 * 14>(to_send, to_receive)) continue;
// If it's false now or another edge happened, then we're in trouble. This
// won't catch all instances of being a little bit slow (because of the
// interrupt delay among other things), but it will catch the code
// constantly falling behind, which seems like the most likely failure
// scenario.
if (!dio1_->Get() || dio1_->WaitForInterrupt(0, false) !=
frc::InterruptableSensorBase::kTimeout) {
AOS_LOG(ERROR, "IMU read took too long\n");
continue;
}
{
const uint16_t calculated_crc = CalculateCrc(&to_receive[4], 11);
uint16_t received_crc =
to_receive[13 * 2 + 1] | (to_receive[13 * 2] << 8);
if (received_crc != calculated_crc) {
AOS_LOG(WARNING,
"received CRC %" PRIx16 " but calculated %" PRIx16 "\n",
received_crc, calculated_crc);
InitializeUntilSuccessful();
continue;
}
}
{
uint16_t diag_stat;
memcpy(&diag_stat, &to_receive[2], 2);
if (!CheckDiagStatValue(diag_stat)) {
InitializeUntilSuccessful();
continue;
}
}
auto builder = imu_values_sender_.MakeBuilder();
IMUValues::Builder imu_builder = builder.MakeBuilder<IMUValues>();
imu_builder.add_fpga_timestamp(::aos::time::DurationInSeconds(
dio1_->ReadRisingTimestamp().time_since_epoch()));
imu_builder.add_monotonic_timestamp_ns(
chrono::duration_cast<chrono::nanoseconds>(read_time.time_since_epoch())
.count());
float gyro_x =
ConvertValue(&to_receive[4], kGyroLsbDegreeSecond * M_PI / 180.0);
float gyro_y =
ConvertValue(&to_receive[6], kGyroLsbDegreeSecond * M_PI / 180.0);
float gyro_z =
ConvertValue(&to_receive[8], kGyroLsbDegreeSecond * M_PI / 180.0);
// The first few seconds of samples are averaged and subtracted from
// subsequent samples for zeroing purposes.
if (!gyros_are_zeroed_) {
average_gyro_x.AddData(gyro_x);
average_gyro_y.AddData(gyro_y);
average_gyro_z.AddData(gyro_z);
if (average_gyro_x.full() && average_gyro_y.full() &&
average_gyro_z.full()) {
robot_state_fetcher_.Fetch();
if (robot_state_fetcher_.get() &&
robot_state_fetcher_->outputs_enabled()) {
gyro_x_zeroed_offset_ = -average_gyro_x.GetAverage();
gyro_y_zeroed_offset_ = -average_gyro_y.GetAverage();
gyro_z_zeroed_offset_ = -average_gyro_z.GetAverage();
AOS_LOG(INFO, "total gyro zero offset X:%f, Y:%f, Z:%f\n",
gyro_x_zeroed_offset_, gyro_y_zeroed_offset_,
gyro_z_zeroed_offset_);
gyros_are_zeroed_ = true;
}
}
}
gyro_x += gyro_x_zeroed_offset_;
gyro_y += gyro_y_zeroed_offset_;
gyro_z += gyro_z_zeroed_offset_;
imu_builder.add_gyro_x(gyro_x);
imu_builder.add_gyro_y(gyro_y);
imu_builder.add_gyro_z(gyro_z);
imu_builder.add_accelerometer_x(
ConvertValue(&to_receive[10], kAccelerometerLsbG));
imu_builder.add_accelerometer_y(
ConvertValue(&to_receive[12], kAccelerometerLsbG));
imu_builder.add_accelerometer_z(
ConvertValue(&to_receive[14], kAccelerometerLsbG));
imu_builder.add_magnetometer_x(
ConvertValue(&to_receive[16], kMagnetometerLsbGauss));
imu_builder.add_magnetometer_y(
ConvertValue(&to_receive[18], kMagnetometerLsbGauss));
imu_builder.add_magnetometer_z(
ConvertValue(&to_receive[20], kMagnetometerLsbGauss));
imu_builder.add_barometer(
ConvertValue(&to_receive[22], kBarometerLsbPascal, false));
imu_builder.add_temperature(
ConvertValue(&to_receive[24], kTemperatureLsbDegree) +
kTemperatureZero);
if (!builder.Send(imu_builder.Finish())) {
AOS_LOG(WARNING, "sending queue message failed\n");
}
spi_idle_callback_();
}
}
float ADIS16448::ConvertValue(uint8_t *data, double lsb_per_output, bool sign) {
double value;
if (sign) {
int16_t raw_value = static_cast<int16_t>(
(static_cast<uint16_t>(data[0]) << 8) | static_cast<uint16_t>(data[1]));
value = raw_value;
} else {
uint16_t raw_value =
(static_cast<uint16_t>(data[0]) << 8) | static_cast<uint16_t>(data[1]);
value = raw_value;
}
return value * lsb_per_output;
}
bool ADIS16448::ReadRegister(uint8_t next_address, uint16_t *value) {
uint8_t to_send[2], to_receive[2];
to_send[0] = next_address;
to_send[1] = 0;
if (!DoTransaction<2>(to_send, to_receive)) return false;
if (value) {
memcpy(value, to_receive, 2);
}
return true;
}
bool ADIS16448::WriteRegister(uint8_t address, uint16_t value) {
uint8_t to_send[4], to_receive[4];
to_send[0] = address | 0x80;
to_send[1] = value & 0xFF;
to_send[2] = address | 0x81;
to_send[3] = value >> 8;
if (!DoTransaction<4>(to_send, to_receive)) return false;
return true;
}
bool ADIS16448::CheckDiagStatValue(uint16_t value) const {
bool r = true;
if (value & (1 << 2)) {
AOS_LOG(WARNING, "IMU gave flash update failure\n");
}
if (value & (1 << 3)) {
AOS_LOG(WARNING, "IMU gave SPI communication failure\n");
}
if (value & (1 << 4)) {
AOS_LOG(WARNING, "IMU gave sensor overrange\n");
}
if (value & (1 << 5)) {
AOS_LOG(WARNING, "IMU gave self-test failure\n");
r = false;
if (value & (1 << 10)) {
AOS_LOG(WARNING, "IMU gave X-axis gyro self-test failure\n");
}
if (value & (1 << 11)) {
AOS_LOG(WARNING, "IMU gave Y-axis gyro self-test failure\n");
}
if (value & (1 << 12)) {
AOS_LOG(WARNING, "IMU gave Z-axis gyro self-test failure\n");
}
if (value & (1 << 13)) {
AOS_LOG(WARNING, "IMU gave X-axis accelerometer self-test failure\n");
}
if (value & (1 << 14)) {
AOS_LOG(WARNING, "IMU gave Y-axis accelerometer self-test failure\n");
}
if (value & (1 << 15)) {
AOS_LOG(WARNING, "IMU gave Z-axis accelerometer self-test failure, %x\n",
value);
}
if (value & (1 << 0)) {
AOS_LOG(WARNING, "IMU gave magnetometer functional test failure\n");
}
if (value & (1 << 1)) {
AOS_LOG(WARNING, "IMU gave barometer functional test failure\n");
}
}
if (value & (1 << 6)) {
AOS_LOG(WARNING, "IMU gave flash test checksum failure\n");
}
if (value & (1 << 8)) {
AOS_LOG(WARNING, "IMU says alarm 1 is active\n");
}
if (value & (1 << 9)) {
AOS_LOG(WARNING, "IMU says alarm 2 is active\n");
}
return r;
}
bool ADIS16448::Initialize() {
if (!ReadRegister(kProdIdAddress, nullptr)) return false;
uint16_t product_id;
if (!ReadRegister(kLotId1Address, &product_id)) return false;
if (product_id != 0x4040) {
AOS_LOG(ERROR, "product ID is %" PRIx16 " instead of 0x4040\n", product_id);
return false;
}
uint16_t lot_id1, lot_id2, serial_number;
if (!ReadRegister(kLotId2Address, &lot_id1)) return false;
if (!ReadRegister(kSerialNumberAddress, &lot_id2)) return false;
if (!ReadRegister(0, &serial_number)) return false;
AOS_LOG(INFO, "have IMU %" PRIx16 "%" PRIx16 ": %" PRIx16 "\n", lot_id1,
lot_id2, serial_number);
// Divide the sampling by 2^2 = 4 to get 819.2 / 4 = 204.8 Hz.
if (!WriteRegister(kSmplPrdAddress, (2 << 8) | 1)) return false;
// Start a self test.
if (!WriteRegister(kMscCtrlAddress, 1 << 10)) return false;
// Wait for the self test to finish.
{
uint16_t value;
do {
::std::this_thread::sleep_for(::std::chrono::milliseconds(10));
if (!ReadRegister(kMscCtrlAddress, &value)) return false;
} while ((value & (1 << 10)) != 0);
}
if (!ReadRegister(kDiagStatAddress, nullptr)) return false;
uint16_t diag_stat;
if (!ReadRegister(0, &diag_stat)) return false;
if (!CheckDiagStatValue(diag_stat)) return false;
if (!WriteRegister(kMscCtrlAddress,
((0 << 0) | // DIO1
(1 << 1) | // DIO goes high when data is valid
(1 << 2) | // enable DIO changing when data is vald
(1 << 4) | // enable CRC16 for burst mode
(1 << 6)))) {
return false;
}
return true;
}
} // namespace wpilib
} // namespace frc971