blob: 41812f23f7f31ca93b3c27750ec78fc1e3277514 [file] [log] [blame]
#ifndef FRC971_CONTROL_LOOPS_STATE_FEEDBACK_LOOP_H_
#define FRC971_CONTROL_LOOPS_STATE_FEEDBACK_LOOP_H_
#include <assert.h>
#include <iostream>
#include <memory>
#include <utility>
#include <vector>
#include <chrono>
#include "Eigen/Dense"
#include "unsupported/Eigen/MatrixFunctions"
#include "aos/common/controls/control_loop.h"
#include "aos/common/logging/logging.h"
#include "aos/common/macros.h"
template <int number_of_states, int number_of_inputs, int number_of_outputs,
typename PlantType, typename ObserverType>
class StateFeedbackLoop;
// For everything in this file, "inputs" and "outputs" are defined from the
// perspective of the plant. This means U is an input and Y is an output
// (because you give the plant U (powers) and it gives you back a Y (sensor
// values). This is the opposite of what they mean from the perspective of the
// controller (U is an output because that's what goes to the motors and Y is an
// input because that's what comes back from the sensors).
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct StateFeedbackPlantCoefficients final {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackPlantCoefficients(const StateFeedbackPlantCoefficients &other)
: A(other.A),
A_inv(other.A_inv),
B(other.B),
C(other.C),
D(other.D),
U_min(other.U_min),
U_max(other.U_max) {}
StateFeedbackPlantCoefficients(
const Eigen::Matrix<double, number_of_states, number_of_states> &A,
const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv,
const Eigen::Matrix<double, number_of_states, number_of_inputs> &B,
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C,
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D,
const Eigen::Matrix<double, number_of_inputs, 1> &U_max,
const Eigen::Matrix<double, number_of_inputs, 1> &U_min)
: A(A), A_inv(A_inv), B(B), C(C), D(D), U_min(U_min), U_max(U_max) {}
const Eigen::Matrix<double, number_of_states, number_of_states> A;
const Eigen::Matrix<double, number_of_states, number_of_states> A_inv;
const Eigen::Matrix<double, number_of_states, number_of_inputs> B;
const Eigen::Matrix<double, number_of_outputs, number_of_states> C;
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> D;
const Eigen::Matrix<double, number_of_inputs, 1> U_min;
const Eigen::Matrix<double, number_of_inputs, 1> U_max;
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class StateFeedbackPlant {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackPlant(
::std::vector<::std::unique_ptr<StateFeedbackPlantCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
*coefficients)
: coefficients_(::std::move(*coefficients)), index_(0) {
Reset();
}
StateFeedbackPlant(StateFeedbackPlant &&other)
: index_(other.index_) {
::std::swap(coefficients_, other.coefficients_);
X_.swap(other.X_);
Y_.swap(other.Y_);
}
virtual ~StateFeedbackPlant() {}
const Eigen::Matrix<double, number_of_states, number_of_states> &A() const {
return coefficients().A;
}
double A(int i, int j) const { return A()(i, j); }
const Eigen::Matrix<double, number_of_states, number_of_states> &A_inv() const {
return coefficients().A_inv;
}
double A_inv(int i, int j) const { return A_inv()(i, j); }
const Eigen::Matrix<double, number_of_states, number_of_inputs> &B() const {
return coefficients().B;
}
double B(int i, int j) const { return B()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C() const {
return coefficients().C;
}
double C(int i, int j) const { return C()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D() const {
return coefficients().D;
}
double D(int i, int j) const { return D()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_min() const {
return coefficients().U_min;
}
double U_min(int i, int j) const { return U_min()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_max() const {
return coefficients().U_max;
}
double U_max(int i, int j) const { return U_max()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &X() const { return X_; }
double X(int i, int j) const { return X()(i, j); }
const Eigen::Matrix<double, number_of_outputs, 1> &Y() const { return Y_; }
double Y(int i, int j) const { return Y()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_X() { return X_; }
double &mutable_X(int i, int j) { return mutable_X()(i, j); }
Eigen::Matrix<double, number_of_outputs, 1> &mutable_Y() { return Y_; }
double &mutable_Y(int i, int j) { return mutable_Y()(i, j); }
const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients(int index) const {
return *coefficients_[index];
}
const StateFeedbackPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients() const {
return *coefficients_[index_];
}
int index() const { return index_; }
void set_index(int index) {
assert(index >= 0);
assert(index < static_cast<int>(coefficients_.size()));
index_ = index;
}
void Reset() {
X_.setZero();
Y_.setZero();
}
// Assert that U is within the hardware range.
virtual void CheckU(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
for (int i = 0; i < kNumInputs; ++i) {
if (U(i, 0) > U_max(i, 0) + 0.00001 || U(i, 0) < U_min(i, 0) - 0.00001) {
LOG(FATAL, "U out of range\n");
}
}
}
// Computes the new X and Y given the control input.
void Update(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
// Powers outside of the range are more likely controller bugs than things
// that the plant should deal with.
CheckU(U);
X_ = Update(X(), U);
UpdateY(U);
}
// Computes the new Y given the control input.
void UpdateY(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
Y_ = C() * X() + D() * U;
}
Eigen::Matrix<double, number_of_states, 1> Update(
const Eigen::Matrix<double, number_of_states, 1> X,
const Eigen::Matrix<double, number_of_inputs, 1> &U) const {
return A() * X + B() * U;
}
protected:
// these are accessible from non-templated subclasses
static const int kNumStates = number_of_states;
static const int kNumOutputs = number_of_outputs;
static const int kNumInputs = number_of_inputs;
private:
Eigen::Matrix<double, number_of_states, 1> X_;
Eigen::Matrix<double, number_of_outputs, 1> Y_;
::std::vector<::std::unique_ptr<StateFeedbackPlantCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
coefficients_;
int index_;
DISALLOW_COPY_AND_ASSIGN(StateFeedbackPlant);
};
// A container for all the controller coefficients.
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct StateFeedbackControllerCoefficients final {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
const Eigen::Matrix<double, number_of_inputs, number_of_states> K;
const Eigen::Matrix<double, number_of_inputs, number_of_states> Kff;
StateFeedbackControllerCoefficients(
const Eigen::Matrix<double, number_of_inputs, number_of_states> &K,
const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff)
: K(K), Kff(Kff) {}
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct StateFeedbackHybridPlantCoefficients final {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackHybridPlantCoefficients(
const StateFeedbackHybridPlantCoefficients &other)
: A_continuous(other.A_continuous),
B_continuous(other.B_continuous),
C(other.C),
D(other.D),
U_min(other.U_min),
U_max(other.U_max) {}
StateFeedbackHybridPlantCoefficients(
const Eigen::Matrix<double, number_of_states, number_of_states>
&A_continuous,
const Eigen::Matrix<double, number_of_states, number_of_inputs>
&B_continuous,
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C,
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D,
const Eigen::Matrix<double, number_of_inputs, 1> &U_max,
const Eigen::Matrix<double, number_of_inputs, 1> &U_min)
: A_continuous(A_continuous),
B_continuous(B_continuous),
C(C),
D(D),
U_min(U_min),
U_max(U_max) {}
const Eigen::Matrix<double, number_of_states, number_of_states> A_continuous;
const Eigen::Matrix<double, number_of_states, number_of_inputs> B_continuous;
const Eigen::Matrix<double, number_of_outputs, number_of_states> C;
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> D;
const Eigen::Matrix<double, number_of_inputs, 1> U_min;
const Eigen::Matrix<double, number_of_inputs, 1> U_max;
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class StateFeedbackHybridPlant {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
StateFeedbackHybridPlant(
::std::vector<::std::unique_ptr<StateFeedbackHybridPlantCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
*coefficients)
: coefficients_(::std::move(*coefficients)), index_(0) {
Reset();
}
StateFeedbackHybridPlant(StateFeedbackHybridPlant &&other)
: index_(other.index_) {
::std::swap(coefficients_, other.coefficients_);
X_.swap(other.X_);
Y_.swap(other.Y_);
}
virtual ~StateFeedbackHybridPlant() {}
const Eigen::Matrix<double, number_of_states, number_of_states> &A() const {
return A_;
}
double A(int i, int j) const { return A()(i, j); }
const Eigen::Matrix<double, number_of_states, number_of_inputs> &B() const {
return B_;
}
double B(int i, int j) const { return B()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_states> &C() const {
return coefficients().C;
}
double C(int i, int j) const { return C()(i, j); }
const Eigen::Matrix<double, number_of_outputs, number_of_inputs> &D() const {
return coefficients().D;
}
double D(int i, int j) const { return D()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_min() const {
return coefficients().U_min;
}
double U_min(int i, int j) const { return U_min()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_max() const {
return coefficients().U_max;
}
double U_max(int i, int j) const { return U_max()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &X() const { return X_; }
double X(int i, int j) const { return X()(i, j); }
const Eigen::Matrix<double, number_of_outputs, 1> &Y() const { return Y_; }
double Y(int i, int j) const { return Y()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_X() { return X_; }
double &mutable_X(int i, int j) { return mutable_X()(i, j); }
Eigen::Matrix<double, number_of_outputs, 1> &mutable_Y() { return Y_; }
double &mutable_Y(int i, int j) { return mutable_Y()(i, j); }
const StateFeedbackHybridPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients(int index) const {
return *coefficients_[index];
}
const StateFeedbackHybridPlantCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients() const {
return *coefficients_[index_];
}
int index() const { return index_; }
void set_index(int index) {
assert(index >= 0);
assert(index < static_cast<int>(coefficients_.size()));
index_ = index;
}
void Reset() {
X_.setZero();
Y_.setZero();
A_.setZero();
B_.setZero();
DelayedU_.setZero();
UpdateAB(::aos::controls::kLoopFrequency);
}
// Assert that U is within the hardware range.
virtual void CheckU(const Eigen::Matrix<double, number_of_inputs, 1> &U) {
for (int i = 0; i < kNumInputs; ++i) {
if (U(i, 0) > U_max(i, 0) + 0.00001 || U(i, 0) < U_min(i, 0) - 0.00001) {
LOG(FATAL, "U out of range\n");
}
}
}
// Computes the new X and Y given the control input.
void Update(const Eigen::Matrix<double, number_of_inputs, 1> &U,
::std::chrono::nanoseconds dt) {
// Powers outside of the range are more likely controller bugs than things
// that the plant should deal with.
CheckU(U);
::aos::robot_state.FetchLatest();
Eigen::Matrix<double, number_of_inputs, 1> current_U =
DelayedU_ * (::aos::robot_state.get()
? ::aos::robot_state->voltage_battery / 12.0
: 1.0);
X_ = Update(X(), current_U);
Y_ = C() * X() + D() * current_U;
DelayedU_ = U;
}
Eigen::Matrix<double, number_of_inputs, 1> DelayedU_;
Eigen::Matrix<double, number_of_states, 1> Update(
const Eigen::Matrix<double, number_of_states, 1> X,
const Eigen::Matrix<double, number_of_inputs, 1> &U,
::std::chrono::nanoseconds dt) {
UpdateAB(dt);
return A() * X + B() * U;
}
protected:
// these are accessible from non-templated subclasses
static const int kNumStates = number_of_states;
static const int kNumOutputs = number_of_outputs;
static const int kNumInputs = number_of_inputs;
private:
void UpdateAB(::std::chrono::nanoseconds dt) {
Eigen::Matrix<double, number_of_states + number_of_inputs,
number_of_states + number_of_inputs>
M_state_continuous;
M_state_continuous.setZero();
M_state_continuous.template block<number_of_states, number_of_states>(0,
0) =
coefficients().A_continuous *
::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
.count();
M_state_continuous.template block<number_of_states, number_of_inputs>(
0, number_of_states) =
coefficients().B_continuous *
::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
.count();
Eigen::Matrix<double, number_of_states + number_of_inputs,
number_of_states + number_of_inputs>
M_state = M_state_continuous.exp();
A_ = M_state.template block<number_of_states, number_of_states>(0, 0);
B_ = M_state.template block<number_of_states, number_of_inputs>(
0, number_of_states);
}
Eigen::Matrix<double, number_of_states, 1> X_;
Eigen::Matrix<double, number_of_outputs, 1> Y_;
Eigen::Matrix<double, number_of_states, number_of_states> A_;
Eigen::Matrix<double, number_of_states, number_of_inputs> B_;
::std::vector<::std::unique_ptr<StateFeedbackHybridPlantCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
coefficients_;
int index_;
DISALLOW_COPY_AND_ASSIGN(StateFeedbackHybridPlant);
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class StateFeedbackController {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
explicit StateFeedbackController(
::std::vector<::std::unique_ptr<StateFeedbackControllerCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>> *controllers)
: coefficients_(::std::move(*controllers)) {}
StateFeedbackController(StateFeedbackController &&other)
: index_(other.index_) {
::std::swap(coefficients_, other.coefficients_);
}
const Eigen::Matrix<double, number_of_inputs, number_of_states> &K() const {
return coefficients().K;
}
double K(int i, int j) const { return K()(i, j); }
const Eigen::Matrix<double, number_of_inputs, number_of_states> &Kff() const {
return coefficients().Kff;
}
double Kff(int i, int j) const { return Kff()(i, j); }
void Reset() {}
// Sets the current controller to be index, clamped to be within range.
void set_index(int index) {
if (index < 0) {
index_ = 0;
} else if (index >= static_cast<int>(coefficients_.size())) {
index_ = static_cast<int>(coefficients_.size()) - 1;
} else {
index_ = index;
}
}
int index() const { return index_; }
const StateFeedbackControllerCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients(int index) const {
return *coefficients_[index];
}
const StateFeedbackControllerCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients() const {
return *coefficients_[index_];
}
private:
int index_ = 0;
::std::vector<::std::unique_ptr<StateFeedbackControllerCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
coefficients_;
};
// A container for all the observer coefficients.
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct StateFeedbackObserverCoefficients final {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
const Eigen::Matrix<double, number_of_states, number_of_outputs> L;
StateFeedbackObserverCoefficients(
const Eigen::Matrix<double, number_of_states, number_of_outputs> &L)
: L(L) {}
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class StateFeedbackObserver {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
explicit StateFeedbackObserver(
::std::vector<::std::unique_ptr<StateFeedbackObserverCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>> *observers)
: coefficients_(::std::move(*observers)) {}
StateFeedbackObserver(StateFeedbackObserver &&other)
: X_hat_(other.X_hat_), index_(other.index_) {
::std::swap(coefficients_, other.coefficients_);
}
const Eigen::Matrix<double, number_of_states, number_of_outputs> &L() const {
return coefficients().L;
}
double L(int i, int j) const { return L()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
return X_hat_;
}
Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() { return X_hat_; }
void Reset(
StateFeedbackLoop<number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackPlant<number_of_states, number_of_inputs,
number_of_outputs>,
StateFeedbackObserver> * /*loop*/) {
X_hat_.setZero();
}
void Predict(
StateFeedbackLoop<number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackPlant<number_of_states, number_of_inputs,
number_of_outputs>,
StateFeedbackObserver> *loop,
const Eigen::Matrix<double, number_of_inputs, 1> &new_u,
::std::chrono::nanoseconds /*dt*/) {
mutable_X_hat() = loop->plant().Update(X_hat(), new_u);
}
void Correct(const StateFeedbackLoop<
number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackPlant<number_of_states, number_of_inputs,
number_of_outputs>,
StateFeedbackObserver> &loop,
const Eigen::Matrix<double, number_of_inputs, 1> &U,
const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
mutable_X_hat() += loop.plant().A_inv() * L() *
(Y - loop.plant().C() * X_hat() - loop.plant().D() * U);
}
// Sets the current controller to be index, clamped to be within range.
void set_index(int index) {
if (index < 0) {
index_ = 0;
} else if (index >= static_cast<int>(coefficients_.size())) {
index_ = static_cast<int>(coefficients_.size()) - 1;
} else {
index_ = index;
}
}
int index() const { return index_; }
const StateFeedbackObserverCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients(int index) const {
return *coefficients_[index];
}
const StateFeedbackObserverCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients() const {
return *coefficients_[index_];
}
private:
// Internal state estimate.
Eigen::Matrix<double, number_of_states, 1> X_hat_;
int index_ = 0;
::std::vector<::std::unique_ptr<StateFeedbackObserverCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
coefficients_;
};
// A container for all the observer coefficients.
template <int number_of_states, int number_of_inputs, int number_of_outputs>
struct HybridKalmanCoefficients final {
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
const Eigen::Matrix<double, number_of_states, number_of_states> Q_continuous;
const Eigen::Matrix<double, number_of_outputs, number_of_outputs> R_continuous;
const Eigen::Matrix<double, number_of_states, number_of_states> P_steady_state;
HybridKalmanCoefficients(
const Eigen::Matrix<double, number_of_states, number_of_states>
&Q_continuous,
const Eigen::Matrix<double, number_of_outputs, number_of_outputs>
&R_continuous,
const Eigen::Matrix<double, number_of_states, number_of_states>
&P_steady_state)
: Q_continuous(Q_continuous),
R_continuous(R_continuous),
P_steady_state(P_steady_state) {}
};
template <int number_of_states, int number_of_inputs, int number_of_outputs>
class HybridKalman {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
explicit HybridKalman(
::std::vector<::std::unique_ptr<HybridKalmanCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>> *observers)
: coefficients_(::std::move(*observers)) {}
HybridKalman(HybridKalman &&other)
: X_hat_(other.X_hat_), index_(other.index_) {
::std::swap(coefficients_, other.coefficients_);
}
// Getters for Q
const Eigen::Matrix<double, number_of_states, number_of_states> &Q() const {
return Q_;
}
double Q(int i, int j) const { return Q()(i, j); }
// Getters for R
const Eigen::Matrix<double, number_of_outputs, number_of_outputs> &R() const {
return R_;
}
double R(int i, int j) const { return R()(i, j); }
// Getters for P
const Eigen::Matrix<double, number_of_states, number_of_states> &P() const {
return P_;
}
double P(int i, int j) const { return P()(i, j); }
// Getters for X_hat
const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
return X_hat_;
}
Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() { return X_hat_; }
void Reset(StateFeedbackLoop<
number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackHybridPlant<number_of_states, number_of_inputs,
number_of_outputs>,
HybridKalman> *loop) {
X_hat_.setZero();
P_ = coefficients().P_steady_state;
UpdateQR(loop, ::aos::controls::kLoopFrequency);
}
void Predict(StateFeedbackLoop<
number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackHybridPlant<number_of_states, number_of_inputs,
number_of_outputs>,
HybridKalman> *loop,
const Eigen::Matrix<double, number_of_inputs, 1> &new_u,
::std::chrono::nanoseconds dt) {
// Trigger the predict step. This will update A() and B() in the plant.
mutable_X_hat() = loop->mutable_plant()->Update(X_hat(), new_u, dt);
UpdateQR(loop, dt);
P_ = loop->plant().A() * P_ * loop->plant().A().transpose() + Q_;
}
void Correct(const StateFeedbackLoop<
number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackHybridPlant<number_of_states, number_of_inputs,
number_of_outputs>,
HybridKalman> &loop,
const Eigen::Matrix<double, number_of_inputs, 1> &U,
const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
Eigen::Matrix<double, number_of_outputs, 1> Y_bar =
Y - (loop.plant().C() * X_hat_ + loop.plant().D() * U);
Eigen::Matrix<double, number_of_outputs, number_of_outputs> S =
loop.plant().C() * P_ * loop.plant().C().transpose() + R_;
Eigen::Matrix<double, number_of_states, number_of_outputs> KalmanGain;
KalmanGain = (S.transpose().ldlt().solve(
(P() * loop.plant().C().transpose()).transpose()))
.transpose();
X_hat_ = X_hat_ + KalmanGain * Y_bar;
P_ = (loop.plant().coefficients().A_continuous.Identity() -
KalmanGain * loop.plant().C()) *
P();
}
// Sets the current controller to be index, clamped to be within range.
void set_index(int index) {
if (index < 0) {
index_ = 0;
} else if (index >= static_cast<int>(coefficients_.size())) {
index_ = static_cast<int>(coefficients_.size()) - 1;
} else {
index_ = index;
}
}
int index() const { return index_; }
const HybridKalmanCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients(int index) const {
return *coefficients_[index];
}
const HybridKalmanCoefficients<number_of_states, number_of_inputs,
number_of_outputs>
&coefficients() const {
return *coefficients_[index_];
}
private:
void UpdateQR(StateFeedbackLoop<
number_of_states, number_of_inputs, number_of_outputs,
StateFeedbackHybridPlant<number_of_states, number_of_inputs,
number_of_outputs>,
HybridKalman> *loop,
::std::chrono::nanoseconds dt) {
// Now, compute the discrete time Q and R coefficients.
Eigen::Matrix<double, number_of_states, number_of_states> Qtemp =
(coefficients().Q_continuous +
coefficients().Q_continuous.transpose()) /
2.0;
Eigen::Matrix<double, number_of_outputs, number_of_outputs> Rtemp =
(coefficients().R_continuous +
coefficients().R_continuous.transpose()) /
2.0;
Eigen::Matrix<double, 2 * number_of_states, 2 * number_of_states> M_gain;
M_gain.setZero();
// Set up the matrix M = [[-A, Q], [0, A.T]]
M_gain.template block<number_of_states, number_of_states>(0, 0) =
-loop->plant().coefficients().A_continuous;
M_gain.template block<number_of_states, number_of_states>(
0, number_of_states) = Qtemp;
M_gain.template block<number_of_states, number_of_states>(
number_of_states, number_of_states) =
loop->plant().coefficients().A_continuous.transpose();
Eigen::Matrix<double, 2 * number_of_states, 2 *number_of_states> phi =
(M_gain *
::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
.count())
.exp();
// Phi12 = phi[0:number_of_states, number_of_states:2*number_of_states]
// Phi22 = phi[number_of_states:2*number_of_states,
// number_of_states:2*number_of_states]
Eigen::Matrix<double, number_of_states, number_of_states> phi12 =
phi.block(0, number_of_states, number_of_states, number_of_states);
Eigen::Matrix<double, number_of_states, number_of_states> phi22 = phi.block(
number_of_states, number_of_states, number_of_states, number_of_states);
Q_ = phi22.transpose() * phi12;
Q_ = (Q_ + Q_.transpose()) / 2.0;
R_ = Rtemp /
::std::chrono::duration_cast<::std::chrono::duration<double>>(dt)
.count();
}
// Internal state estimate.
Eigen::Matrix<double, number_of_states, 1> X_hat_;
// Internal covariance estimate.
Eigen::Matrix<double, number_of_states, number_of_states> P_;
// Discretized Q and R for the kalman filter.
Eigen::Matrix<double, number_of_states, number_of_states> Q_;
Eigen::Matrix<double, number_of_outputs, number_of_outputs> R_;
int index_ = 0;
::std::vector<::std::unique_ptr<HybridKalmanCoefficients<
number_of_states, number_of_inputs, number_of_outputs>>>
coefficients_;
};
template <int number_of_states, int number_of_inputs, int number_of_outputs,
typename PlantType = StateFeedbackPlant<
number_of_states, number_of_inputs, number_of_outputs>,
typename ObserverType = StateFeedbackObserver<
number_of_states, number_of_inputs, number_of_outputs>>
class StateFeedbackLoop {
public:
EIGEN_MAKE_ALIGNED_OPERATOR_NEW;
explicit StateFeedbackLoop(
PlantType &&plant,
StateFeedbackController<number_of_states, number_of_inputs,
number_of_outputs> &&controller,
ObserverType &&observer)
: plant_(::std::move(plant)),
controller_(::std::move(controller)),
observer_(::std::move(observer)) {
Reset();
}
StateFeedbackLoop(StateFeedbackLoop &&other)
: plant_(::std::move(other.plant_)),
controller_(::std::move(other.controller_)),
observer_(::std::move(other.observer_)) {
R_.swap(other.R_);
next_R_.swap(other.next_R_);
U_.swap(other.U_);
U_uncapped_.swap(other.U_uncapped_);
ff_U_.swap(other.ff_U_);
}
virtual ~StateFeedbackLoop() {}
const Eigen::Matrix<double, number_of_states, 1> &X_hat() const {
return observer().X_hat();
}
double X_hat(int i, int j) const { return X_hat()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &R() const { return R_; }
double R(int i, int j) const { return R()(i, j); }
const Eigen::Matrix<double, number_of_states, 1> &next_R() const {
return next_R_;
}
double next_R(int i, int j) const { return next_R()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U() const { return U_; }
double U(int i, int j) const { return U()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &U_uncapped() const {
return U_uncapped_;
}
double U_uncapped(int i, int j) const { return U_uncapped()(i, j); }
const Eigen::Matrix<double, number_of_inputs, 1> &ff_U() const {
return ff_U_;
}
double ff_U(int i, int j) const { return ff_U()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_X_hat() {
return observer_.mutable_X_hat();
}
double &mutable_X_hat(int i, int j) { return mutable_X_hat()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_R() { return R_; }
double &mutable_R(int i, int j) { return mutable_R()(i, j); }
Eigen::Matrix<double, number_of_states, 1> &mutable_next_R() {
return next_R_;
}
double &mutable_next_R(int i, int j) { return mutable_next_R()(i, j); }
Eigen::Matrix<double, number_of_inputs, 1> &mutable_U() { return U_; }
double &mutable_U(int i, int j) { return mutable_U()(i, j); }
Eigen::Matrix<double, number_of_inputs, 1> &mutable_U_uncapped() {
return U_uncapped_;
}
double &mutable_U_uncapped(int i, int j) {
return mutable_U_uncapped()(i, j);
}
const PlantType &plant() const { return plant_; }
PlantType *mutable_plant() { return &plant_; }
const StateFeedbackController<number_of_states, number_of_inputs,
number_of_outputs>
&controller() const {
return controller_;
}
const ObserverType &observer() const { return observer_; }
void Reset() {
R_.setZero();
next_R_.setZero();
U_.setZero();
U_uncapped_.setZero();
ff_U_.setZero();
plant_.Reset();
controller_.Reset();
observer_.Reset(this);
}
// If U is outside the hardware range, limit it before the plant tries to use
// it.
virtual void CapU() {
for (int i = 0; i < kNumInputs; ++i) {
if (U(i, 0) > plant().U_max(i, 0)) {
U_(i, 0) = plant().U_max(i, 0);
} else if (U(i, 0) < plant().U_min(i, 0)) {
U_(i, 0) = plant().U_min(i, 0);
}
}
}
// Corrects X_hat given the observation in Y.
void Correct(const Eigen::Matrix<double, number_of_outputs, 1> &Y) {
observer_.Correct(*this, U(), Y);
}
const Eigen::Matrix<double, number_of_states, 1> error() const {
return R() - X_hat();
}
// Returns the calculated controller power.
virtual const Eigen::Matrix<double, number_of_inputs, 1> ControllerOutput() {
// TODO(austin): Should this live in StateSpaceController?
ff_U_ = FeedForward();
return controller().K() * error() + ff_U_;
}
// Calculates the feed forwards power.
virtual const Eigen::Matrix<double, number_of_inputs, 1> FeedForward() {
// TODO(austin): Should this live in StateSpaceController?
return controller().Kff() * (next_R() - plant().A() * R());
}
// stop_motors is whether or not to output all 0s.
void Update(bool stop_motors,
::std::chrono::nanoseconds dt = ::std::chrono::milliseconds(5)) {
if (stop_motors) {
U_.setZero();
U_uncapped_.setZero();
ff_U_.setZero();
} else {
U_ = U_uncapped_ = ControllerOutput();
CapU();
}
UpdateObserver(U_, dt);
UpdateFFReference();
}
// Updates R() after any CapU operations happen on U().
void UpdateFFReference() {
ff_U_ -= U_uncapped() - U();
if (!controller().Kff().isZero(0)) {
R_ = plant().A() * R() + plant().B() * ff_U_;
}
}
void UpdateObserver(const Eigen::Matrix<double, number_of_inputs, 1> &new_u,
::std::chrono::nanoseconds dt) {
observer_.Predict(this, new_u, dt);
}
// Sets the current controller to be index.
void set_index(int index) {
plant_.set_index(index);
controller_.set_index(index);
observer_.set_index(index);
}
int index() const { return plant_.index(); }
protected:
PlantType plant_;
StateFeedbackController<number_of_states, number_of_inputs, number_of_outputs>
controller_;
ObserverType observer_;
// These are accessible from non-templated subclasses.
static constexpr int kNumStates = number_of_states;
static constexpr int kNumOutputs = number_of_outputs;
static constexpr int kNumInputs = number_of_inputs;
// Portion of U which is based on the feed-forwards.
Eigen::Matrix<double, number_of_inputs, 1> ff_U_;
private:
// Current goal (Used by the feed-back controller).
Eigen::Matrix<double, number_of_states, 1> R_;
// Goal to go to in the next cycle (Used by Feed-Forward controller.)
Eigen::Matrix<double, number_of_states, 1> next_R_;
// Computed output after being capped.
Eigen::Matrix<double, number_of_inputs, 1> U_;
// Computed output before being capped.
Eigen::Matrix<double, number_of_inputs, 1> U_uncapped_;
DISALLOW_COPY_AND_ASSIGN(StateFeedbackLoop);
};
#endif // FRC971_CONTROL_LOOPS_STATE_FEEDBACK_LOOP_H_