blob: 0cff3f382a6dd4009193968b14dd5b7fb5a16217 [file] [log] [blame]
#ifndef Y2018_ACTORS_AUTONOMOUS_ACTOR_H_
#define Y2018_ACTORS_AUTONOMOUS_ACTOR_H_
#include <chrono>
#include <memory>
#include "aos/actions/actions.h"
#include "aos/actions/actor.h"
#include "frc971/autonomous/base_autonomous_actor.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/control_loops/drivetrain/drivetrain_config.h"
#include "y2018/control_loops/superstructure/arm/generated_graph.h"
#include "y2018/control_loops/superstructure/superstructure.q.h"
namespace y2018 {
namespace actors {
using ::y2018::control_loops::superstructure_queue;
using ::frc971::control_loops::drivetrain_queue;
namespace arm = ::y2018::control_loops::superstructure::arm;
class AutonomousActor : public ::frc971::autonomous::BaseAutonomousActor {
public:
explicit AutonomousActor(::frc971::autonomous::AutonomousActionQueueGroup *s);
bool RunAction(
const ::frc971::autonomous::AutonomousActionParams &params) override;
private:
void Reset() {
roller_voltage_ = 0.0;
left_intake_angle_ = -3.2;
right_intake_angle_ = -3.2;
arm_goal_position_ = arm::NeutralIndex();
grab_box_ = false;
open_claw_ = false;
close_claw_ = false;
deploy_fork_ = false;
disable_box_correct_ = false;
InitializeEncoders();
ResetDrivetrain();
SendSuperstructureGoal();
}
double roller_voltage_ = 0.0;
double left_intake_angle_ = -3.2;
double right_intake_angle_ = -3.2;
uint32_t arm_goal_position_ = arm::NeutralIndex();
bool grab_box_ = false;
bool open_claw_ = false;
bool close_claw_ = false;
bool deploy_fork_ = false;
bool disable_box_correct_ = false;
void set_roller_voltage(double roller_voltage) {
roller_voltage_ = roller_voltage;
}
void set_intake_angle(double intake_angle) {
set_left_intake_angle(intake_angle);
set_right_intake_angle(intake_angle);
}
void set_left_intake_angle(double left_intake_angle) {
left_intake_angle_ = left_intake_angle;
}
void set_right_intake_angle(double right_intake_angle) {
right_intake_angle_ = right_intake_angle;
}
void set_arm_goal_position(uint32_t arm_goal_position) {
arm_goal_position_ = arm_goal_position;
}
void set_grab_box(bool grab_box) { grab_box_ = grab_box; }
void set_open_claw(bool open_claw) { open_claw_ = open_claw; }
void set_close_claw(bool close_claw) { close_claw_ = close_claw; }
void set_deploy_fork(bool deploy_fork) { deploy_fork_ = deploy_fork; }
void set_disable_box_correct(bool disable_box_correct) {
disable_box_correct_ = disable_box_correct;
}
void SendSuperstructureGoal() {
auto new_superstructure_goal = superstructure_queue.goal.MakeMessage();
new_superstructure_goal->intake.roller_voltage = roller_voltage_;
new_superstructure_goal->intake.left_intake_angle = left_intake_angle_;
new_superstructure_goal->intake.right_intake_angle = right_intake_angle_;
new_superstructure_goal->arm_goal_position = arm_goal_position_;
new_superstructure_goal->grab_box = grab_box_;
new_superstructure_goal->open_claw = open_claw_;
new_superstructure_goal->close_claw = close_claw_;
new_superstructure_goal->deploy_fork = deploy_fork_;
new_superstructure_goal->trajectory_override = false;
if (!new_superstructure_goal.Send()) {
LOG(ERROR, "Sending superstructure goal failed.\n");
}
}
bool ThreeCubeAuto(::aos::monotonic_clock::time_point start_time);
bool CloseSwitch(::aos::monotonic_clock::time_point start_time,
bool left = true);
bool FarSwitch(::aos::monotonic_clock::time_point start_time,
bool drive_behind = true, bool left = true);
bool FarReadyScale(::aos::monotonic_clock::time_point start_time);
bool DriveStraight();
bool FarScale(::aos::monotonic_clock::time_point start_time);
bool WaitForArmTrajectoryOrDriveClose(double drive_threshold,
double arm_threshold) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
constexpr double kPositionTolerance = 0.02;
constexpr double kProfileTolerance = 0.001;
while (true) {
if (ShouldCancel()) {
return false;
}
superstructure_queue.status.FetchLatest();
drivetrain_queue.status.FetchLatest();
if (drivetrain_queue.status.get() && superstructure_queue.status.get()) {
const double left_profile_error =
(initial_drivetrain_.left -
drivetrain_queue.status->profiled_left_position_goal);
const double right_profile_error =
(initial_drivetrain_.right -
drivetrain_queue.status->profiled_right_position_goal);
const double left_error =
(initial_drivetrain_.left -
drivetrain_queue.status->estimated_left_position);
const double right_error =
(initial_drivetrain_.right -
drivetrain_queue.status->estimated_right_position);
const double profile_distance_to_go =
(left_profile_error + right_profile_error) / 2.0;
const double distance_to_go = (left_error + right_error) / 2.0;
// Check superstructure first.
if (superstructure_queue.status->arm.current_node ==
arm_goal_position_ &&
superstructure_queue.status->arm.path_distance_to_go <
arm_threshold) {
LOG(INFO, "Arm finished first: %f, drivetrain %f distance\n",
superstructure_queue.status->arm.path_distance_to_go,
::std::abs(distance_to_go));
return true;
}
// Now check drivetrain.
if (::std::abs(profile_distance_to_go) <
drive_threshold + kProfileTolerance &&
::std::abs(distance_to_go) < drive_threshold + kPositionTolerance) {
LOG(INFO,
"Drivetrain finished first: arm %f, drivetrain %f distance\n",
superstructure_queue.status->arm.path_distance_to_go,
::std::abs(distance_to_go));
return true;
}
}
phased_loop.SleepUntilNext();
}
}
bool WaitForArmTrajectoryClose(double threshold) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
superstructure_queue.status.FetchLatest();
if (superstructure_queue.status.get()) {
if (superstructure_queue.status->arm.current_node ==
arm_goal_position_ &&
superstructure_queue.status->arm.path_distance_to_go < threshold) {
return true;
}
}
phased_loop.SleepUntilNext();
}
}
bool WaitForBoxGrabed() {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(5),
::std::chrono::milliseconds(5) / 2);
while (true) {
if (ShouldCancel()) {
return false;
}
superstructure_queue.status.FetchLatest();
if (superstructure_queue.status.get()) {
if (superstructure_queue.status->arm.grab_state == 4) {
return true;
}
}
phased_loop.SleepUntilNext();
}
}
};
} // namespace actors
} // namespace y2018
#endif // Y2018_ACTORS_AUTONOMOUS_ACTOR_H_