blob: ef59ba4c716f9768e0cc7933cdfc1fb89602537a [file] [log] [blame]
#include <stdio.h>
#include <chrono>
#include <memory>
#include "aos/util/phased_loop.h"
#include "aos/time/time.h"
#include "aos/util/trapezoid_profile.h"
#include "aos/logging/logging.h"
#include "aos/logging/queue_logging.h"
#include "aos/actions/actions.h"
#include "frc971/autonomous/auto.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "y2014/actors/drivetrain_actor.h"
#include "y2014/actors/shoot_actor.h"
#include "y2014/constants.h"
#include "y2014/control_loops/claw/claw.q.h"
#include "y2014/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
#include "y2014/control_loops/shooter/shooter.q.h"
#include "y2014/queues/auto_mode.q.h"
#include "y2014/queues/hot_goal.q.h"
#include "y2014/queues/profile_params.q.h"
namespace y2014 {
namespace autonomous {
namespace chrono = ::std::chrono;
namespace this_thread = ::std::this_thread;
using ::aos::monotonic_clock;
namespace {
double DoubleSeconds(monotonic_clock::duration duration) {
return ::std::chrono::duration_cast<::std::chrono::duration<double>>(duration)
.count();
}
} // namespace
static double left_initial_position, right_initial_position;
bool ShouldExitAuto() {
::frc971::autonomous::autonomous.FetchLatest();
bool ans = !::frc971::autonomous::autonomous->run_auto;
if (ans) {
LOG(INFO, "Time to exit auto mode\n");
}
return ans;
}
void StopDrivetrain() {
LOG(INFO, "Stopping the drivetrain\n");
frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
.controller_type(1)
.highgear(true)
.left_goal(left_initial_position)
.right_goal(right_initial_position)
.quickturn(false)
.Send();
}
void ResetDrivetrain() {
LOG(INFO, "resetting the drivetrain\n");
::frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
.controller_type(0)
.highgear(true)
.wheel(0.0)
.throttle(0.0)
.left_goal(left_initial_position)
.right_goal(right_initial_position)
.Send();
}
void WaitUntilDoneOrCanceled(
::std::unique_ptr<aos::common::actions::Action> action) {
if (!action) {
LOG(ERROR, "No action, not waiting\n");
return;
}
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(10),
::std::chrono::milliseconds(10) / 2);
while (true) {
// Poll the running bit and auto done bits.
phased_loop.SleepUntilNext();
if (!action->Running() || ShouldExitAuto()) {
return;
}
}
}
void StepDrive(double distance, double theta) {
double left_goal = (left_initial_position + distance -
theta * control_loops::drivetrain::kRobotRadius);
double right_goal = (right_initial_position + distance +
theta * control_loops::drivetrain::kRobotRadius);
::frc971::control_loops::drivetrain_queue.goal.MakeWithBuilder()
.controller_type(1)
.highgear(true)
.left_goal(left_goal)
.right_goal(right_goal)
.Send();
left_initial_position = left_goal;
right_initial_position = right_goal;
}
void PositionClawVertically(double intake_power = 0.0, double centering_power = 0.0) {
if (!control_loops::claw_queue.goal.MakeWithBuilder()
.bottom_angle(0.0)
.separation_angle(0.0)
.intake(intake_power)
.centering(centering_power)
.Send()) {
LOG(WARNING, "sending claw goal failed\n");
}
}
void PositionClawBackIntake() {
if (!control_loops::claw_queue.goal.MakeWithBuilder()
.bottom_angle(-2.273474)
.separation_angle(0.0)
.intake(12.0)
.centering(12.0)
.Send()) {
LOG(WARNING, "sending claw goal failed\n");
}
}
void PositionClawUpClosed() {
// Move the claw to where we're going to shoot from but keep it closed until
// it gets there.
if (!control_loops::claw_queue.goal.MakeWithBuilder()
.bottom_angle(0.86)
.separation_angle(0.0)
.intake(4.0)
.centering(1.0)
.Send()) {
LOG(WARNING, "sending claw goal failed\n");
}
}
void PositionClawForShot() {
if (!control_loops::claw_queue.goal.MakeWithBuilder()
.bottom_angle(0.86)
.separation_angle(0.10)
.intake(4.0)
.centering(1.0)
.Send()) {
LOG(WARNING, "sending claw goal failed\n");
}
}
void SetShotPower(double power) {
LOG(INFO, "Setting shot power to %f\n", power);
if (!control_loops::shooter_queue.goal.MakeWithBuilder()
.shot_power(power)
.shot_requested(false)
.unload_requested(false)
.load_requested(false)
.Send()) {
LOG(WARNING, "sending shooter goal failed\n");
}
}
void WaitUntilNear(double distance) {
while (true) {
if (ShouldExitAuto()) return;
::frc971::control_loops::drivetrain_queue.status.FetchAnother();
double left_error = ::std::abs(
left_initial_position -
::frc971::control_loops::drivetrain_queue.status->estimated_left_position);
double right_error = ::std::abs(
right_initial_position -
::frc971::control_loops::drivetrain_queue.status->estimated_right_position);
const double kPositionThreshold = 0.05 + distance;
if (right_error < kPositionThreshold && left_error < kPositionThreshold) {
LOG(INFO, "At the goal\n");
return;
}
}
}
const ProfileParams kFastDrive = {3.0, 2.5};
const ProfileParams kSlowDrive = {2.5, 2.5};
const ProfileParams kFastWithBallDrive = {3.0, 2.0};
const ProfileParams kSlowWithBallDrive = {2.5, 2.0};
const ProfileParams kFastTurn = {3.0, 10.0};
::std::unique_ptr<::y2014::actors::DrivetrainAction> SetDriveGoal(
double distance, const ProfileParams drive_params, double theta = 0,
const ProfileParams &turn_params = kFastTurn) {
LOG(INFO, "Driving to %f\n", distance);
::y2014::actors::DrivetrainActionParams params;
params.left_initial_position = left_initial_position;
params.right_initial_position = right_initial_position;
params.y_offset = distance;
params.theta_offset = theta;
params.maximum_turn_acceleration = turn_params.acceleration;
params.maximum_turn_velocity = turn_params.velocity;
params.maximum_velocity = drive_params.velocity;
params.maximum_acceleration = drive_params.acceleration;
auto drivetrain_action = actors::MakeDrivetrainAction(params);
drivetrain_action->Start();
left_initial_position +=
distance - theta * control_loops::drivetrain::kRobotRadius;
right_initial_position +=
distance + theta * control_loops::drivetrain::kRobotRadius;
return drivetrain_action;
}
void Shoot() {
// Shoot.
auto shoot_action = actors::MakeShootAction();
shoot_action->Start();
WaitUntilDoneOrCanceled(::std::move(shoot_action));
}
void InitializeEncoders() {
::frc971::control_loops::drivetrain_queue.status.FetchAnother();
left_initial_position =
::frc971::control_loops::drivetrain_queue.status->estimated_left_position;
right_initial_position =
::frc971::control_loops::drivetrain_queue.status->estimated_right_position;
}
void WaitUntilClawDone() {
while (true) {
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(10),
::std::chrono::milliseconds(10) / 2);
// Poll the running bit and auto done bits.
phased_loop.SleepUntilNext();
control_loops::claw_queue.status.FetchLatest();
control_loops::claw_queue.goal.FetchLatest();
if (ShouldExitAuto()) {
return;
}
if (control_loops::claw_queue.status.get() == nullptr ||
control_loops::claw_queue.goal.get() == nullptr) {
continue;
}
bool ans =
control_loops::claw_queue.status->zeroed &&
(::std::abs(control_loops::claw_queue.status->bottom_velocity) <
1.0) &&
(::std::abs(control_loops::claw_queue.status->bottom -
control_loops::claw_queue.goal->bottom_angle) <
0.10) &&
(::std::abs(control_loops::claw_queue.status->separation -
control_loops::claw_queue.goal->separation_angle) <
0.4);
if (ans) {
return;
}
if (ShouldExitAuto()) return;
}
}
class HotGoalDecoder {
public:
HotGoalDecoder() {
ResetCounts();
}
void ResetCounts() {
hot_goal.FetchLatest();
if (hot_goal.get()) {
start_counts_ = *hot_goal;
LOG_STRUCT(INFO, "counts reset to", start_counts_);
start_counts_valid_ = true;
} else {
LOG(WARNING, "no hot goal message. ignoring\n");
start_counts_valid_ = false;
}
}
void Update(bool block = false) {
if (block) {
hot_goal.FetchAnother();
} else {
hot_goal.FetchLatest();
}
if (hot_goal.get()) LOG_STRUCT(INFO, "new counts", *hot_goal);
}
bool left_triggered() const {
if (!start_counts_valid_ || !hot_goal.get()) return false;
return (hot_goal->left_count - start_counts_.left_count) > kThreshold;
}
bool right_triggered() const {
if (!start_counts_valid_ || !hot_goal.get()) return false;
return (hot_goal->right_count - start_counts_.right_count) > kThreshold;
}
bool is_left() const {
if (!start_counts_valid_ || !hot_goal.get()) return false;
const uint64_t left_difference =
hot_goal->left_count - start_counts_.left_count;
const uint64_t right_difference =
hot_goal->right_count - start_counts_.right_count;
if (left_difference > kThreshold) {
if (right_difference > kThreshold) {
// We've seen a lot of both, so pick the one we've seen the most of.
return left_difference > right_difference;
} else {
// We've seen enough left but not enough right, so go with it.
return true;
}
} else {
// We haven't seen enough left, so it's not left.
return false;
}
}
bool is_right() const {
if (!start_counts_valid_ || !hot_goal.get()) return false;
const uint64_t left_difference =
hot_goal->left_count - start_counts_.left_count;
const uint64_t right_difference =
hot_goal->right_count - start_counts_.right_count;
if (right_difference > kThreshold) {
if (left_difference > kThreshold) {
// We've seen a lot of both, so pick the one we've seen the most of.
return right_difference > left_difference;
} else {
// We've seen enough right but not enough left, so go with it.
return true;
}
} else {
// We haven't seen enough right, so it's not right.
return false;
}
}
private:
static const uint64_t kThreshold = 5;
::y2014::HotGoal start_counts_;
bool start_counts_valid_;
};
void HandleAuto() {
enum class AutoVersion : uint8_t {
kStraight,
kDoubleHot,
kSingleHot,
};
// The front of the robot is 1.854 meters from the wall
static const double kShootDistance = 3.15;
static const double kPickupDistance = 0.5;
static const double kTurnAngle = 0.3;
monotonic_clock::time_point start_time = monotonic_clock::now();
LOG(INFO, "Handling auto mode\n");
AutoVersion auto_version;
::y2014::sensors::auto_mode.FetchLatest();
if (!::y2014::sensors::auto_mode.get()) {
LOG(WARNING, "not sure which auto mode to use\n");
auto_version = AutoVersion::kStraight;
} else {
static const double kSelectorMin = 0.2, kSelectorMax = 4.4;
const double kSelectorStep = (kSelectorMax - kSelectorMin) / 3.0;
if (::y2014::sensors::auto_mode->voltage < kSelectorStep + kSelectorMin) {
auto_version = AutoVersion::kSingleHot;
} else if (::y2014::sensors::auto_mode->voltage <
2 * kSelectorStep + kSelectorMin) {
auto_version = AutoVersion::kStraight;
} else {
auto_version = AutoVersion::kDoubleHot;
}
}
LOG(INFO, "running auto %" PRIu8 "\n", static_cast<uint8_t>(auto_version));
const ProfileParams &drive_params =
(auto_version == AutoVersion::kStraight) ? kFastDrive : kSlowDrive;
const ProfileParams &drive_with_ball_params =
(auto_version == AutoVersion::kStraight) ? kFastWithBallDrive
: kSlowWithBallDrive;
HotGoalDecoder hot_goal_decoder;
// True for left, false for right.
bool first_shot_left, second_shot_left_default, second_shot_left;
ResetDrivetrain();
this_thread::sleep_for(chrono::milliseconds(100));
if (ShouldExitAuto()) return;
InitializeEncoders();
// Turn the claw on, keep it straight up until the ball has been grabbed.
LOG(INFO, "Claw going up at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
PositionClawVertically(12.0, 4.0);
SetShotPower(115.0);
// Wait for the ball to enter the claw.
this_thread::sleep_for(chrono::milliseconds(250));
if (ShouldExitAuto()) return;
LOG(INFO, "Readying claw for shot at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
{
if (ShouldExitAuto()) return;
// Drive to the goal.
auto drivetrain_action = SetDriveGoal(-kShootDistance, drive_params);
this_thread::sleep_for(chrono::milliseconds(750));
PositionClawForShot();
LOG(INFO, "Waiting until drivetrain is finished\n");
WaitUntilDoneOrCanceled(::std::move(drivetrain_action));
if (ShouldExitAuto()) return;
}
hot_goal_decoder.Update();
if (hot_goal_decoder.is_left()) {
LOG(INFO, "first shot left\n");
first_shot_left = true;
second_shot_left_default = false;
} else if (hot_goal_decoder.is_right()) {
LOG(INFO, "first shot right\n");
first_shot_left = false;
second_shot_left_default = true;
} else {
LOG(INFO, "first shot defaulting left\n");
first_shot_left = true;
second_shot_left_default = true;
}
if (auto_version == AutoVersion::kDoubleHot) {
if (ShouldExitAuto()) return;
auto drivetrain_action = SetDriveGoal(
0, drive_with_ball_params, first_shot_left ? kTurnAngle : -kTurnAngle);
WaitUntilDoneOrCanceled(::std::move(drivetrain_action));
if (ShouldExitAuto()) return;
} else if (auto_version == AutoVersion::kSingleHot) {
do {
// TODO(brians): Wait for next message with timeout or something.
this_thread::sleep_for(chrono::milliseconds(3));
hot_goal_decoder.Update(false);
if (ShouldExitAuto()) return;
} while (!hot_goal_decoder.left_triggered() &&
(monotonic_clock::now() - start_time) < chrono::seconds(9));
} else if (auto_version == AutoVersion::kStraight) {
this_thread::sleep_for(chrono::milliseconds(400));
}
// Shoot.
LOG(INFO, "Shooting at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
Shoot();
this_thread::sleep_for(chrono::milliseconds(50));
if (auto_version == AutoVersion::kDoubleHot) {
if (ShouldExitAuto()) return;
auto drivetrain_action = SetDriveGoal(
0, drive_with_ball_params, first_shot_left ? -kTurnAngle : kTurnAngle);
WaitUntilDoneOrCanceled(::std::move(drivetrain_action));
if (ShouldExitAuto()) return;
} else if (auto_version == AutoVersion::kSingleHot) {
LOG(INFO, "auto done at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
PositionClawVertically(0.0, 0.0);
return;
}
{
if (ShouldExitAuto()) return;
// Intake the new ball.
LOG(INFO, "Claw ready for intake at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
PositionClawBackIntake();
auto drivetrain_action =
SetDriveGoal(kShootDistance + kPickupDistance, drive_params);
LOG(INFO, "Waiting until drivetrain is finished\n");
WaitUntilDoneOrCanceled(::std::move(drivetrain_action));
if (ShouldExitAuto()) return;
LOG(INFO, "Wait for the claw at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
WaitUntilClawDone();
if (ShouldExitAuto()) return;
}
// Drive back.
{
LOG(INFO, "Driving back at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
auto drivetrain_action =
SetDriveGoal(-(kShootDistance + kPickupDistance), drive_params);
this_thread::sleep_for(chrono::milliseconds(300));
hot_goal_decoder.ResetCounts();
if (ShouldExitAuto()) return;
PositionClawUpClosed();
WaitUntilClawDone();
if (ShouldExitAuto()) return;
PositionClawForShot();
LOG(INFO, "Waiting until drivetrain is finished\n");
WaitUntilDoneOrCanceled(::std::move(drivetrain_action));
if (ShouldExitAuto()) return;
WaitUntilClawDone();
if (ShouldExitAuto()) return;
}
hot_goal_decoder.Update();
if (hot_goal_decoder.is_left()) {
LOG(INFO, "second shot left\n");
second_shot_left = true;
} else if (hot_goal_decoder.is_right()) {
LOG(INFO, "second shot right\n");
second_shot_left = false;
} else {
LOG(INFO, "second shot defaulting %s\n",
second_shot_left_default ? "left" : "right");
second_shot_left = second_shot_left_default;
}
if (auto_version == AutoVersion::kDoubleHot) {
if (ShouldExitAuto()) return;
auto drivetrain_action = SetDriveGoal(
0, drive_params, second_shot_left ? kTurnAngle : -kTurnAngle);
WaitUntilDoneOrCanceled(::std::move(drivetrain_action));
if (ShouldExitAuto()) return;
} else if (auto_version == AutoVersion::kStraight) {
this_thread::sleep_for(chrono::milliseconds(400));
}
LOG(INFO, "Shooting at %f\n",
DoubleSeconds(monotonic_clock::now() - start_time));
// Shoot
Shoot();
if (ShouldExitAuto()) return;
// Get ready to zero when we come back up.
this_thread::sleep_for(chrono::milliseconds(50));
PositionClawVertically(0.0, 0.0);
}
} // namespace autonomous
} // namespace y2014