| #include "frc971/control_loops/drivetrain/trajectory.h" |
| |
| #include <chrono> |
| |
| #include "Eigen/Dense" |
| #include "aos/logging/matrix_logging.h" |
| #include "frc971/control_loops/dlqr.h" |
| #include "frc971/control_loops/c2d.h" |
| #include "frc971/control_loops/drivetrain/distance_spline.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| #include "frc971/control_loops/hybrid_state_feedback_loop.h" |
| #include "frc971/control_loops/state_feedback_loop.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| Trajectory::Trajectory(const DistanceSpline *spline, |
| const DrivetrainConfig<double> &config, double vmax, |
| int num_distance) |
| : spline_(spline), |
| velocity_drivetrain_( |
| ::std::unique_ptr<StateFeedbackLoop<2, 2, 2, double, |
| StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>>( |
| new StateFeedbackLoop<2, 2, 2, double, |
| StateFeedbackHybridPlant<2, 2, 2>, |
| HybridKalman<2, 2, 2>>( |
| config.make_hybrid_drivetrain_velocity_loop()))), |
| robot_radius_l_(config.robot_radius), |
| robot_radius_r_(config.robot_radius), |
| longitudal_acceleration_(3.0), |
| lateral_acceleration_(2.0), |
| Tlr_to_la_((::Eigen::Matrix<double, 2, 2>() << 0.5, 0.5, |
| -1.0 / (robot_radius_l_ + robot_radius_r_), |
| 1.0 / (robot_radius_l_ + robot_radius_r_)) |
| .finished()), |
| Tla_to_lr_(Tlr_to_la_.inverse()), |
| plan_(num_distance == 0 |
| ? ::std::max(100, static_cast<int>(spline_->length() / 0.0025)) |
| : num_distance, |
| vmax), |
| plan_segment_type_(plan_.size() - 1, SegmentType::VELOCITY_LIMITED) {} |
| |
| void Trajectory::LateralAccelPass() { |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| const double distance = Distance(i); |
| plan_[i] = ::std::min(plan_[i], LateralVelocityCurvature(distance)); |
| } |
| } |
| |
| // TODO(austin): Deduplicate this potentially with the backward accel function. |
| // Need to sort out how the max velocity limit is going to work since the |
| // velocity and acceleration need to match at all points. |
| // TODO(austin): Accel check the wheels instead of the center of mass. |
| double Trajectory::ForwardAcceleration(const double x, const double v) { |
| ::Eigen::Matrix<double, 2, 1> K3; |
| ::Eigen::Matrix<double, 2, 1> K4; |
| ::Eigen::Matrix<double, 2, 1> K5; |
| K345(x, &K3, &K4, &K5); |
| |
| const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v; |
| // Now, solve for all a's and find the best one which meets our criteria. |
| double maxa = -::std::numeric_limits<double>::infinity(); |
| for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0), |
| (voltage_limit_ - C(1, 0)) / K5(1, 0), |
| (-voltage_limit_ - C(0, 0)) / K5(0, 0), |
| (-voltage_limit_ - C(1, 0)) / K5(1, 0)}) { |
| const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v; |
| if ((U.array().abs() < voltage_limit_ + 1e-6).all()) { |
| maxa = ::std::max(maxa, a); |
| } |
| } |
| |
| // Then, assume an acceleration oval and stay inside it. |
| const double lateral_acceleration = v * v * spline_->DDXY(x).norm(); |
| const double ellipse_down_shift = longitudal_acceleration_ * 1.0; |
| const double ellipse_width_stretch = ::std::sqrt( |
| 1.0 / (1.0 - ::std::pow(ellipse_down_shift / (longitudal_acceleration_ + |
| ellipse_down_shift), |
| 2.0))); |
| const double squared = |
| 1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_ / |
| ellipse_width_stretch, |
| 2.0); |
| // If we would end up with an imaginary number, cap us at 0 acceleration. |
| // TODO(austin): Investigate when this happens, why, and fix it. |
| if (squared < 0.0) { |
| LOG(ERROR, "Imaginary %f, maxa: %f, fa(%f, %f) -> 0.0\n", squared, maxa, x, |
| v); |
| return 0.0; |
| } |
| const double longitudal_acceleration = |
| ::std::sqrt(::std::abs(squared)) * |
| (longitudal_acceleration_ + ellipse_down_shift) - |
| ellipse_down_shift; |
| return ::std::min(longitudal_acceleration, maxa); |
| } |
| |
| void Trajectory::ForwardPass() { |
| plan_[0] = 0.0; |
| const double delta_distance = Distance(1) - Distance(0); |
| for (size_t i = 0; i < plan_.size() - 1; ++i) { |
| const double distance = Distance(i); |
| |
| // Integrate our acceleration forward one step. |
| const double new_plan_velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| plan_[i], distance, delta_distance); |
| |
| if (new_plan_velocity < plan_[i + 1]) { |
| plan_[i + 1] = new_plan_velocity; |
| plan_segment_type_[i] = SegmentType::ACCELERATION_LIMITED; |
| } |
| } |
| } |
| |
| double Trajectory::BackwardAcceleration(double x, double v) { |
| ::Eigen::Matrix<double, 2, 1> K3; |
| ::Eigen::Matrix<double, 2, 1> K4; |
| ::Eigen::Matrix<double, 2, 1> K5; |
| K345(x, &K3, &K4, &K5); |
| |
| // Now, solve for all a's and find the best one which meets our criteria. |
| const ::Eigen::Matrix<double, 2, 1> C = K3 * v * v + K4 * v; |
| double mina = ::std::numeric_limits<double>::infinity(); |
| for (const double a : {(voltage_limit_ - C(0, 0)) / K5(0, 0), |
| (voltage_limit_ - C(1, 0)) / K5(1, 0), |
| (-voltage_limit_ - C(0, 0)) / K5(0, 0), |
| (-voltage_limit_ - C(1, 0)) / K5(1, 0)}) { |
| const ::Eigen::Matrix<double, 2, 1> U = K5 * a + K3 * v * v + K4 * v; |
| if ((U.array().abs() < voltage_limit_ + 1e-6).all()) { |
| mina = ::std::min(mina, a); |
| } |
| } |
| |
| // Then, assume an acceleration oval and stay inside it. |
| const double lateral_acceleration = v * v * spline_->DDXY(x).norm(); |
| const double ellipse_down_shift = longitudal_acceleration_ * 1.0; |
| const double ellipse_width_stretch = ::std::sqrt( |
| 1.0 / (1.0 - ::std::pow(ellipse_down_shift / (longitudal_acceleration_ + |
| ellipse_down_shift), |
| 2.0))); |
| const double squared = |
| 1.0 - ::std::pow(lateral_acceleration / lateral_acceleration_ / |
| ellipse_width_stretch, |
| 2.0); |
| // If we would end up with an imaginary number, cap us at 0 acceleration. |
| // TODO(austin): Investigate when this happens, why, and fix it. |
| if (squared < 0.0) { |
| LOG(ERROR, "Imaginary %f, mina: %f, fa(%f, %f) -> 0.0\n", squared, mina, x, |
| v); |
| return 0.0; |
| } |
| const double longitudal_acceleration = |
| -::std::sqrt(::std::abs(squared)) * |
| (longitudal_acceleration_ + ellipse_down_shift) + |
| ellipse_down_shift; |
| return ::std::max(longitudal_acceleration, mina); |
| } |
| |
| void Trajectory::BackwardPass() { |
| const double delta_distance = Distance(0) - Distance(1); |
| plan_.back() = 0.0; |
| for (size_t i = plan_.size() - 1; i > 0; --i) { |
| const double distance = Distance(i); |
| |
| // Integrate our deceleration back one step. |
| const double new_plan_velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| plan_[i], distance, delta_distance); |
| |
| if (new_plan_velocity < plan_[i - 1]) { |
| plan_[i - 1] = new_plan_velocity; |
| plan_segment_type_[i - 1] = SegmentType::DECELERATION_LIMITED; |
| } |
| } |
| } |
| |
| ::Eigen::Matrix<double, 3, 1> Trajectory::FFAcceleration(double distance) { |
| if (distance < 0.0) { |
| // Make sure we don't end up off the beginning of the curve. |
| distance = 0.0; |
| } else if (distance > length()) { |
| // Make sure we don't end up off the end of the curve. |
| distance = length(); |
| } |
| const size_t before_index = DistanceToSegment(distance); |
| const size_t after_index = before_index + 1; |
| |
| const double before_distance = Distance(before_index); |
| const double after_distance = Distance(after_index); |
| |
| // And then also make sure we aren't curvature limited. |
| const double vcurvature = LateralVelocityCurvature(distance); |
| |
| double acceleration; |
| double velocity; |
| switch (plan_segment_type_[DistanceToSegment(distance)]) { |
| case SegmentType::VELOCITY_LIMITED: |
| acceleration = 0.0; |
| velocity = (plan_[before_index] + plan_[after_index]) / 2.0; |
| // TODO(austin): Accelerate or decelerate until we hit the limit in the |
| // time slice. Otherwise our acceleration will be lying for this slice. |
| // Do note, we've got small slices so the effect will be small. |
| break; |
| case SegmentType::CURVATURE_LIMITED: |
| velocity = vcurvature; |
| acceleration = 0.0; |
| break; |
| case SegmentType::ACCELERATION_LIMITED: |
| velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return ForwardAcceleration(x, v); }, |
| plan_[before_index], before_distance, distance - before_distance); |
| acceleration = ForwardAcceleration(distance, velocity); |
| break; |
| case SegmentType::DECELERATION_LIMITED: |
| velocity = IntegrateAccelForDistance( |
| [this](double x, double v) { return BackwardAcceleration(x, v); }, |
| plan_[after_index], after_distance, distance - after_distance); |
| acceleration = BackwardAcceleration(distance, velocity); |
| break; |
| default: |
| LOG(FATAL, "Unknown segment type %d\n", |
| static_cast<int>(plan_segment_type_[DistanceToSegment(distance)])); |
| break; |
| } |
| |
| if (vcurvature < velocity) { |
| velocity = vcurvature; |
| acceleration = 0.0; |
| LOG(ERROR, "Curvature won\n"); |
| } |
| return (::Eigen::Matrix<double, 3, 1>() << distance, velocity, acceleration) |
| .finished(); |
| } |
| |
| ::Eigen::Matrix<double, 2, 1> Trajectory::FFVoltage(double distance) { |
| const Eigen::Matrix<double, 3, 1> xva = FFAcceleration(distance); |
| const double velocity = xva(1); |
| const double acceleration = xva(2); |
| |
| ::Eigen::Matrix<double, 2, 1> K3; |
| ::Eigen::Matrix<double, 2, 1> K4; |
| ::Eigen::Matrix<double, 2, 1> K5; |
| K345(distance, &K3, &K4, &K5); |
| |
| return K5 * acceleration + K3 * velocity * velocity + K4 * velocity; |
| } |
| |
| const ::std::vector<double> Trajectory::Distances() const { |
| ::std::vector<double> d; |
| d.reserve(plan_.size()); |
| for (size_t i = 0; i < plan_.size(); ++i) { |
| d.push_back(Distance(i)); |
| } |
| return d; |
| } |
| |
| ::Eigen::Matrix<double, 5, 5> Trajectory::ALinearizedContinuous( |
| const ::Eigen::Matrix<double, 5, 1> &state) const { |
| |
| const double sintheta = ::std::sin(state(2)); |
| const double costheta = ::std::cos(state(2)); |
| const ::Eigen::Matrix<double, 2, 1> linear_angular = |
| Tlr_to_la_ * state.block<2, 1>(3, 0); |
| |
| // When stopped, just roll with a min velocity. |
| double linear_velocity = 0.0; |
| constexpr double kMinVelocity = 0.1; |
| if (::std::abs(linear_angular(0)) < kMinVelocity / 100.0) { |
| linear_velocity = 0.1; |
| } else if (::std::abs(linear_angular(0)) > kMinVelocity) { |
| linear_velocity = linear_angular(0); |
| } else if (linear_angular(0) > 0) { |
| linear_velocity = kMinVelocity; |
| } else if (linear_angular(0) < 0) { |
| linear_velocity = -kMinVelocity; |
| } |
| |
| ::Eigen::Matrix<double, 5, 5> result = ::Eigen::Matrix<double, 5, 5>::Zero(); |
| result(0, 2) = -sintheta * linear_velocity; |
| result(0, 3) = 0.5 * costheta; |
| result(0, 4) = 0.5 * costheta; |
| |
| result(1, 2) = costheta * linear_velocity; |
| result(1, 3) = 0.5 * sintheta; |
| result(1, 4) = 0.5 * sintheta; |
| |
| result(2, 3) = Tlr_to_la_(1, 0); |
| result(2, 4) = Tlr_to_la_(1, 1); |
| |
| result.block<2, 2>(3, 3) = |
| velocity_drivetrain_->plant().coefficients().A_continuous; |
| return result; |
| } |
| |
| ::Eigen::Matrix<double, 5, 2> Trajectory::BLinearizedContinuous() const { |
| ::Eigen::Matrix<double, 5, 2> result = ::Eigen::Matrix<double, 5, 2>::Zero(); |
| result.block<2, 2>(3, 0) = |
| velocity_drivetrain_->plant().coefficients().B_continuous; |
| return result; |
| } |
| |
| void Trajectory::AB(const ::Eigen::Matrix<double, 5, 1> &state, |
| ::std::chrono::nanoseconds dt, |
| ::Eigen::Matrix<double, 5, 5> *A, |
| ::Eigen::Matrix<double, 5, 2> *B) const { |
| ::Eigen::Matrix<double, 5, 5> A_linearized_continuous = |
| ALinearizedContinuous(state); |
| ::Eigen::Matrix<double, 5, 2> B_linearized_continuous = |
| BLinearizedContinuous(); |
| |
| // Now, convert it to discrete. |
| controls::C2D(A_linearized_continuous, B_linearized_continuous, |
| dt, A, B); |
| } |
| |
| ::Eigen::Matrix<double, 2, 5> Trajectory::KForState( |
| const ::Eigen::Matrix<double, 5, 1> &state, ::std::chrono::nanoseconds dt, |
| const ::Eigen::DiagonalMatrix<double, 5> &Q, |
| const ::Eigen::DiagonalMatrix<double, 2> &R) const { |
| ::Eigen::Matrix<double, 5, 5> A; |
| ::Eigen::Matrix<double, 5, 2> B; |
| AB(state, dt, &A, &B); |
| |
| ::Eigen::Matrix<double, 5, 5> S = ::Eigen::Matrix<double, 5, 5>::Zero(); |
| ::Eigen::Matrix<double, 2, 5> K = ::Eigen::Matrix<double, 2, 5>::Zero(); |
| |
| int info = ::frc971::controls::dlqr<5, 2>(A, B, Q, R, &K, &S); |
| if (info == 0) { |
| LOG_MATRIX(INFO, "K", K); |
| } else { |
| LOG(ERROR, "Failed to solve %d, controllability: %d\n", info, |
| controls::Controllability(A, B)); |
| // TODO(austin): Can we be more clever here? Use the last one? We should |
| // collect more info about when this breaks down from logs. |
| K = ::Eigen::Matrix<double, 2, 5>::Zero(); |
| } |
| ::Eigen::EigenSolver<::Eigen::Matrix<double, 5, 5>> eigensolver(A - B * K); |
| const auto eigenvalues = eigensolver.eigenvalues(); |
| LOG(DEBUG, |
| "Eigenvalues: (%f + %fj), (%f + %fj), (%f + %fj), (%f + %fj), (%f + " |
| "%fj)\n", |
| eigenvalues(0).real(), eigenvalues(0).imag(), eigenvalues(1).real(), |
| eigenvalues(1).imag(), eigenvalues(2).real(), eigenvalues(2).imag(), |
| eigenvalues(3).real(), eigenvalues(3).imag(), eigenvalues(4).real(), |
| eigenvalues(4).imag()); |
| return K; |
| } |
| |
| const ::Eigen::Matrix<double, 5, 1> Trajectory::GoalState(double distance, |
| double velocity) { |
| ::Eigen::Matrix<double, 5, 1> result; |
| result.block<2, 1>(0, 0) = spline_->XY(distance); |
| result(2, 0) = spline_->Theta(distance); |
| |
| result.block<2, 1>(3, 0) = Tla_to_lr_ * |
| (::Eigen::Matrix<double, 2, 1>() << velocity, |
| spline_->DThetaDt(distance, velocity)) |
| .finished(); |
| return result; |
| } |
| |
| ::Eigen::Matrix<double, 3, 1> Trajectory::GetNextXVA( |
| ::std::chrono::nanoseconds dt, ::Eigen::Matrix<double, 2, 1> *state) { |
| double dt_float = |
| ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt).count(); |
| |
| // TODO(austin): This feels like something that should be pulled out into |
| // a library for re-use. |
| *state = RungeKutta([this](const ::Eigen::Matrix<double, 2, 1> x) { |
| ::Eigen::Matrix<double, 3, 1> xva = FFAcceleration(x(0)); |
| return (::Eigen::Matrix<double, 2, 1>() << x(1), xva(2)).finished(); |
| }, *state, dt_float); |
| |
| ::Eigen::Matrix<double, 3, 1> result = FFAcceleration((*state)(0)); |
| (*state)(1) = result(1); |
| return result; |
| } |
| |
| ::std::vector<::Eigen::Matrix<double, 3, 1>> Trajectory::PlanXVA( |
| ::std::chrono::nanoseconds dt) { |
| ::Eigen::Matrix<double, 2, 1> state = ::Eigen::Matrix<double, 2, 1>::Zero(); |
| ::std::vector<::Eigen::Matrix<double, 3, 1>> result; |
| result.emplace_back(FFAcceleration(0)); |
| result.back()(1) = 0.0; |
| |
| while (!is_at_end(state)) { |
| result.emplace_back(GetNextXVA(dt, &state)); |
| } |
| return result; |
| } |
| |
| void Trajectory::LimitVelocity(double starting_distance, double ending_distance, |
| const double max_velocity) { |
| const double segment_length = ending_distance - starting_distance; |
| |
| const double min_length = length() / static_cast<double>(plan_.size() - 1); |
| if (starting_distance > ending_distance) { |
| LOG(FATAL, "End before start: %f > %f\n", starting_distance, |
| ending_distance); |
| } |
| starting_distance = ::std::min(length(), ::std::max(0.0, starting_distance)); |
| ending_distance = ::std::min(length(), ::std::max(0.0, ending_distance)); |
| if (segment_length < min_length) { |
| const size_t plan_index = static_cast<size_t>( |
| ::std::round((starting_distance + ending_distance) / 2.0 / min_length)); |
| if (max_velocity < plan_[plan_index]) { |
| plan_[plan_index] = max_velocity; |
| } |
| } else { |
| for (size_t i = DistanceToSegment(starting_distance) + 1; |
| i < DistanceToSegment(ending_distance) + 1; ++i) { |
| if (max_velocity < plan_[i]) { |
| plan_[i] = max_velocity; |
| if (i < DistanceToSegment(ending_distance)) { |
| plan_segment_type_[i] = SegmentType::VELOCITY_LIMITED; |
| } |
| } |
| } |
| } |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |