blob: 3ba856d37c9758d8a326ec089fa585eef469debf [file] [log] [blame]
#include "frc971/control_loops/drivetrain/spline.h"
#include <vector>
#include "gflags/gflags.h"
#include "gtest/gtest.h"
#include "third_party/matplotlib-cpp/matplotlibcpp.h"
DEFINE_bool(plot, false, "If true, plot");
namespace frc971 {
namespace control_loops {
namespace drivetrain {
namespace testing {
// Test fixture with a spline from 0, 0 to 1, 1
class SplineTest : public ::testing::Test {
protected:
SplineTest()
: control_points_((::Eigen::Matrix<double, 2, 4>() << 0.0, 0.5, 0.5, 1.0,
0.0, 0.0, 1.0, 1.0)
.finished()),
spline4_(control_points_),
spline6_(Spline4To6(control_points_)) {}
::Eigen::Matrix<double, 2, 4> control_points_;
NSpline<4> spline4_;
NSpline<6> spline6_;
};
// Tests that the derivitives of xy integrate back up to the position.
TEST_F(SplineTest, XYIntegral) {
::std::vector<double> alphas_plot;
::std::vector<double> x_plot;
::std::vector<double> y_plot;
::std::vector<double> ix_plot;
::std::vector<double> iy_plot;
::std::vector<double> dx_plot;
::std::vector<double> dy_plot;
::std::vector<double> idx_plot;
::std::vector<double> idy_plot;
const int num_points = 10000;
::Eigen::Matrix<double, 2, 1> point = spline6_.Point(0.0);
::Eigen::Matrix<double, 2, 1> dpoint = spline6_.DPoint(0.0);
::Eigen::Matrix<double, 2, 1> ddpoint = spline6_.DDPoint(0.0);
const double dalpha = 1.0 / static_cast<double>(num_points - 1);
for (int i = 0; i < num_points; ++i) {
const double alpha =
1.0 * static_cast<double>(i) / static_cast<double>(num_points - 1);
const ::Eigen::Matrix<double, 2, 1> expected_point = spline6_.Point(alpha);
const ::Eigen::Matrix<double, 2, 1> expected_dpoint = spline6_.DPoint(alpha);
const ::Eigen::Matrix<double, 2, 1> expected_ddpoint =
spline6_.DDPoint(alpha);
alphas_plot.push_back(alpha);
x_plot.push_back(expected_point(0));
y_plot.push_back(expected_point(1));
ix_plot.push_back(point(0));
iy_plot.push_back(point(1));
dx_plot.push_back(expected_dpoint(0));
dy_plot.push_back(expected_dpoint(1));
idx_plot.push_back(dpoint(0));
idy_plot.push_back(dpoint(1));
EXPECT_LT((point - expected_point).norm(), 1e-2) << ": At alpha " << alpha;
EXPECT_LT((dpoint - expected_dpoint).norm(), 1e-2) << ": At alpha "
<< alpha;
EXPECT_LT((ddpoint - expected_ddpoint).norm(), 1e-2) << ": At alpha "
<< alpha;
// We need to record the starting state without integrating.
if (i == 0) {
continue;
}
point += dpoint * dalpha;
dpoint += ddpoint * dalpha;
ddpoint += spline6_.DDDPoint(alpha) * dalpha;
}
// Conditionally plot the functions and their integrals to aid debugging.
if (FLAGS_plot) {
matplotlibcpp::figure();
matplotlibcpp::plot(alphas_plot, x_plot, {{"label", "x"}});
matplotlibcpp::plot(alphas_plot, ix_plot, {{"label", "ix"}});
matplotlibcpp::plot(alphas_plot, y_plot, {{"label", "y"}});
matplotlibcpp::plot(alphas_plot, iy_plot, {{"label", "iy"}});
matplotlibcpp::plot(alphas_plot, dx_plot, {{"label", "dx"}});
matplotlibcpp::plot(alphas_plot, idx_plot, {{"label", "idx"}});
matplotlibcpp::plot(alphas_plot, dy_plot, {{"label", "dy"}});
matplotlibcpp::plot(alphas_plot, idy_plot, {{"label", "idy"}});
matplotlibcpp::legend();
matplotlibcpp::figure();
matplotlibcpp::plot(x_plot, y_plot, {{"label", "spline"}});
matplotlibcpp::legend();
matplotlibcpp::show();
}
}
// Tests that the derivitives of theta integrate back up to the angle.
TEST_F(SplineTest, ThetaIntegral) {
::std::vector<double> alphas_plot;
::std::vector<double> theta_plot;
::std::vector<double> itheta_plot;
::std::vector<double> dtheta_plot;
::std::vector<double> idtheta_plot;
const int num_points = 10000;
double theta = spline6_.Theta(0.0);
double dtheta = spline6_.DTheta(0.0);
const double dalpha = 1.0 / static_cast<double>(num_points - 1);
for (int i = 0; i < num_points; ++i) {
const double alpha =
1.0 * static_cast<double>(i) / static_cast<double>(num_points - 1);
const double expected_theta = spline6_.Theta(alpha);
const double expected_dtheta = spline6_.DTheta(alpha);
alphas_plot.push_back(alpha);
theta_plot.push_back(expected_theta);
itheta_plot.push_back(theta);
dtheta_plot.push_back(expected_dtheta);
idtheta_plot.push_back(dtheta);
EXPECT_NEAR(expected_theta, theta, 1e-2) << ": At alpha " << alpha;
EXPECT_NEAR(expected_dtheta, dtheta, 1e-2) << ": At alpha " << alpha;
// We need to record the starting state without integrating.
if (i == 0) {
continue;
}
theta += dtheta * dalpha;
dtheta += spline6_.DDTheta(alpha) * dalpha;
}
// Conditionally plot the functions and their integrals to aid debugging.
if (FLAGS_plot) {
matplotlibcpp::figure();
matplotlibcpp::plot(alphas_plot, theta_plot, {{"label", "theta"}});
matplotlibcpp::plot(alphas_plot, itheta_plot, {{"label", "itheta"}});
matplotlibcpp::plot(alphas_plot, dtheta_plot, {{"label", "dtheta"}});
matplotlibcpp::plot(alphas_plot, idtheta_plot, {{"label", "idtheta"}});
matplotlibcpp::legend();
matplotlibcpp::show();
}
}
// Tests that a 4 point spline has the same points as a 6 point spline built
// with Spline4To6.
TEST_F(SplineTest, FourToSixSpline) {
const int num_points = 10000;
::std::vector<double> alphas_plot;
::std::vector<double> x_plot;
::std::vector<double> y_plot;
const double dalpha = 1.0 / static_cast<double>(num_points - 1);
for (int i = 0; i < num_points; ++i) {
const double alpha = dalpha * static_cast<double>(i);
const ::Eigen::Matrix<double, 2, 1> expected_point = spline4_.Point(alpha);
const ::Eigen::Matrix<double, 2, 1> expected_dpoint =
spline4_.DPoint(alpha);
const ::Eigen::Matrix<double, 2, 1> expected_ddpoint =
spline4_.DDPoint(alpha);
const ::Eigen::Matrix<double, 2, 1> expected_dddpoint =
spline4_.DDDPoint(alpha);
const ::Eigen::Matrix<double, 2, 1> point = spline6_.Point(alpha);
const ::Eigen::Matrix<double, 2, 1> dpoint = spline6_.DPoint(alpha);
const ::Eigen::Matrix<double, 2, 1> ddpoint = spline6_.DDPoint(alpha);
const ::Eigen::Matrix<double, 2, 1> dddpoint = spline6_.DDDPoint(alpha);
alphas_plot.push_back(alpha);
x_plot.push_back(point(0));
y_plot.push_back(point(1));
EXPECT_LT((point - expected_point).norm(), 1e-9) << ": At alpha " << alpha;
EXPECT_LT((dpoint - expected_dpoint).norm(), 1e-9) << ": At alpha "
<< alpha;
EXPECT_LT((ddpoint - expected_ddpoint).norm(), 1e-9) << ": At alpha "
<< alpha;
EXPECT_LT((dddpoint - expected_dddpoint).norm(), 1e-9) << ": At alpha "
<< alpha;
}
// Conditionally plot the functions and their integrals to aid debugging.
if (FLAGS_plot) {
matplotlibcpp::figure();
matplotlibcpp::plot(alphas_plot, x_plot, {{"label", "x"}});
matplotlibcpp::plot(alphas_plot, y_plot, {{"label", "y"}});
matplotlibcpp::legend();
::std::vector<double> control4x;
::std::vector<double> control4y;
::std::vector<double> control6x;
::std::vector<double> control6y;
for (int i = 0; i < 4; ++i) {
control4x.push_back(spline4_.control_points()(0, i));
control4y.push_back(spline4_.control_points()(1, i));
}
for (int i = 0; i < 6; ++i) {
control6x.push_back(spline6_.control_points()(0, i));
control6y.push_back(spline6_.control_points()(1, i));
}
matplotlibcpp::figure();
matplotlibcpp::plot(x_plot, y_plot, {{"label", "spline"}});
matplotlibcpp::plot(control4x, control4y, {{"label", "4 control points"}});
matplotlibcpp::plot(control6x, control6y, {{"label", "6 control points"}});
matplotlibcpp::legend();
matplotlibcpp::show();
}
}
} // namespace testing
} // namespace drivetrain
} // namespace control_loops
} // namespace frc971