| #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |
| #define FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |
| |
| #include <chrono> |
| |
| #include "aos/containers/priority_queue.h" |
| #include "aos/util/math.h" |
| #include "frc971/control_loops/c2d.h" |
| #include "frc971/control_loops/runge_kutta.h" |
| #include "Eigen/Dense" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| |
| namespace y2019 { |
| namespace control_loops { |
| namespace testing { |
| class ParameterizedLocalizerTest; |
| } // namespace testing |
| } // namespace control_loops |
| } // namespace y2019 |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| namespace testing { |
| class HybridEkfTest; |
| } |
| |
| // HybridEkf is an EKF for use in robot localization. It is currently |
| // coded for use with drivetrains in particular, and so the states and inputs |
| // are chosen as such. |
| // The "Hybrid" part of the name refers to the fact that it can take in |
| // measurements with variable time-steps. |
| // measurements can also have been taken in the past and we maintain a buffer |
| // so that we can replay the kalman filter whenever we get an old measurement. |
| // Currently, this class provides the necessary utilities for doing |
| // measurement updates with an encoder/gyro as well as a more generic |
| // update function that can be used for arbitrary nonlinear updates (presumably |
| // a camera update). |
| template <typename Scalar = double> |
| class HybridEkf { |
| public: |
| // An enum specifying what each index in the state vector is for. |
| enum StateIdx { |
| kX = 0, |
| kY = 1, |
| kTheta = 2, |
| kLeftEncoder = 3, |
| kLeftVelocity = 4, |
| kRightEncoder = 5, |
| kRightVelocity = 6, |
| kLeftVoltageError = 7, |
| kRightVoltageError = 8 , |
| kAngularError = 9, |
| }; |
| static constexpr int kNStates = 10; |
| static constexpr int kNInputs = 2; |
| // Number of previous samples to save. |
| static constexpr int kSaveSamples = 50; |
| // Assume that all correction steps will have kNOutputs |
| // dimensions. |
| // TODO(james): Relax this assumption; relaxing it requires |
| // figuring out how to deal with storing variable size |
| // observation matrices, though. |
| static constexpr int kNOutputs = 3; |
| // Inputs are [left_volts, right_volts] |
| typedef Eigen::Matrix<Scalar, kNInputs, 1> Input; |
| // Outputs are either: |
| // [left_encoder, right_encoder, gyro_vel]; or [heading, distance, skew] to |
| // some target. This makes it so we don't have to figure out how we store |
| // variable-size measurement updates. |
| typedef Eigen::Matrix<Scalar, kNOutputs, 1> Output; |
| typedef Eigen::Matrix<Scalar, kNStates, kNStates> StateSquare; |
| // State is [x_position, y_position, theta, Kalman States], where |
| // Kalman States are the states from the standard drivetrain Kalman Filter, |
| // which is: [left encoder, left ground vel, right encoder, right ground vel, |
| // left voltage error, right voltage error, angular_error], where: |
| // left/right encoder should correspond directly to encoder readings |
| // left/right velocities are the velocity of the left/right sides over the |
| // ground (i.e., corrected for angular_error). |
| // voltage errors are the difference between commanded and effective voltage, |
| // used to estimate consistent modelling errors (e.g., friction). |
| // angular error is the difference between the angular velocity as estimated |
| // by the encoders vs. estimated by the gyro, such as might be caused by |
| // wheels on one side of the drivetrain being too small or one side's |
| // wheels slipping more than the other. |
| typedef Eigen::Matrix<Scalar, kNStates, 1> State; |
| |
| // Constructs a HybridEkf for a particular drivetrain. |
| // Currently, we use the drivetrain config for modelling constants |
| // (continuous time A and B matrices) and for the noise matrices for the |
| // encoders/gyro. |
| HybridEkf(const DrivetrainConfig<Scalar> &dt_config) |
| : dt_config_(dt_config), |
| velocity_drivetrain_coefficients_( |
| dt_config.make_hybrid_drivetrain_velocity_loop() |
| .plant() |
| .coefficients()) { |
| InitializeMatrices(); |
| } |
| |
| // Set the initial guess of the state. Can only be called once, and before |
| // any measurement updates have occured. |
| // TODO(james): We may want to actually re-initialize and reset things on |
| // the field. Create some sort of Reset() function. |
| void ResetInitialState(::aos::monotonic_clock::time_point t, |
| const State &state, const StateSquare &P) { |
| observations_.clear(); |
| X_hat_ = state; |
| have_zeroed_encoders_ = true; |
| P_ = P; |
| observations_.PushFromBottom( |
| {t, |
| t, |
| X_hat_, |
| P_, |
| Input::Zero(), |
| Output::Zero(), |
| {}, |
| [](const State &, const Input &) { return Output::Zero(); }, |
| [](const State &) { |
| return Eigen::Matrix<Scalar, kNOutputs, kNStates>::Zero(); |
| }, |
| Eigen::Matrix<Scalar, kNOutputs, kNOutputs>::Identity()}); |
| } |
| |
| // Correct with: |
| // A measurement z at time t with z = h(X_hat, U) + v where v has noise |
| // covariance R. |
| // Input U is applied from the previous timestep until time t. |
| // If t is later than any previous measurements, then U must be provided. |
| // If the measurement falls between two previous measurements, then U |
| // can be provided or not; if U is not provided, then it is filled in based |
| // on an assumption that the voltage was held constant between the time steps. |
| // TODO(james): Is it necessary to explicitly to provide a version with H as a |
| // matrix for linear cases? |
| void Correct( |
| const Output &z, const Input *U, |
| ::std::function< |
| void(const State &, const StateSquare &, |
| ::std::function<Output(const State &, const Input &)> *, |
| ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| const State &)> *)> make_h, |
| ::std::function<Output(const State &, const Input &)> h, |
| ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> |
| dhdx, const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| aos::monotonic_clock::time_point t); |
| |
| // A utility function for specifically updating with encoder and gyro |
| // measurements. |
| void UpdateEncodersAndGyro(const Scalar left_encoder, |
| const Scalar right_encoder, const Scalar gyro_rate, |
| const Input &U, |
| ::aos::monotonic_clock::time_point t) { |
| // Because the check below for have_zeroed_encoders_ will add an |
| // Observation, do a check here to ensure that initialization has been |
| // performed and so there is at least one observation. |
| CHECK(!observations_.empty()); |
| if (!have_zeroed_encoders_) { |
| // This logic handles ensuring that on the first encoder reading, we |
| // update the internal state for the encoders to match the reading. |
| // Otherwise, if we restart the drivetrain without restarting |
| // wpilib_interface, then we can get some obnoxious initial corrections |
| // that mess up the localization. |
| State newstate = X_hat_; |
| newstate(kLeftEncoder, 0) = left_encoder; |
| newstate(kRightEncoder, 0) = right_encoder; |
| newstate(kLeftVoltageError, 0) = 0.0; |
| newstate(kRightVoltageError, 0) = 0.0; |
| newstate(kAngularError, 0) = 0.0; |
| ResetInitialState(t, newstate, P_); |
| // We need to set have_zeroed_encoders_ after ResetInitialPosition because |
| // the reset clears have_zeroed_encoders_... |
| have_zeroed_encoders_ = true; |
| } |
| Output z(left_encoder, right_encoder, gyro_rate); |
| Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R; |
| R.setZero(); |
| R.diagonal() << encoder_noise_, encoder_noise_, gyro_noise_; |
| Correct(z, &U, {}, [this](const State &X, const Input &) { |
| return H_encoders_and_gyro_ * X; |
| }, |
| [this](const State &) { return H_encoders_and_gyro_; }, R, t); |
| } |
| |
| // Sundry accessor: |
| State X_hat() const { return X_hat_; } |
| Scalar X_hat(long i) const { return X_hat_(i, 0); } |
| StateSquare P() const { return P_; } |
| ::aos::monotonic_clock::time_point latest_t() const { |
| return observations_.top().t; |
| } |
| |
| private: |
| struct Observation { |
| // Time when the observation was taken. |
| aos::monotonic_clock::time_point t; |
| // Time that the previous observation was taken: |
| aos::monotonic_clock::time_point prev_t; |
| // Estimate of state at previous observation time t, after accounting for |
| // the previous observation. |
| State X_hat; |
| // Noise matrix corresponding to X_hat_. |
| StateSquare P; |
| // The input applied from previous observation until time t. |
| Input U; |
| // Measurement taken at that time. |
| Output z; |
| // A function to create h and dhdx from a given position/covariance |
| // estimate. This is used by the camera to make it so that we only have to |
| // match targets once. |
| // Only called if h and dhdx are empty. |
| ::std::function< |
| void(const State &, const StateSquare &, |
| ::std::function<Output(const State &, const Input &)> *, |
| ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| const State &)> *)> make_h; |
| // A function to calculate the expected output at a given state/input. |
| // TODO(james): For encoders/gyro, it is linear and the function call may |
| // be expensive. Potential source of optimization. |
| ::std::function<Output(const State &, const Input &)> h; |
| // The Jacobian of h with respect to x. |
| // We assume that U has no impact on the Jacobian. |
| // TODO(james): Currently, none of the users of this actually make use of |
| // the ability to have dynamic dhdx (technically, the camera code should |
| // recalculate it to be strictly correct, but I was both too lazy to do |
| // so and it seemed unnecessary). This is a potential source for future |
| // optimizations if function calls are being expensive. |
| ::std::function< |
| Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> dhdx; |
| // The measurement noise matrix. |
| Eigen::Matrix<Scalar, kNOutputs, kNOutputs> R; |
| |
| // In order to sort the observations in the PriorityQueue object, we |
| // need a comparison function. |
| friend bool operator <(const Observation &l, const Observation &r) { |
| return l.t < r.t; |
| } |
| }; |
| |
| void InitializeMatrices(); |
| |
| StateSquare AForState(const State &X) const { |
| StateSquare A_continuous = A_continuous_; |
| const Scalar theta = X(kTheta, 0); |
| const Scalar linear_vel = |
| (X(kLeftVelocity, 0) + X(kRightVelocity, 0)) / 2.0; |
| const Scalar stheta = ::std::sin(theta); |
| const Scalar ctheta = ::std::cos(theta); |
| // X and Y derivatives |
| A_continuous(kX, kTheta) = -stheta * linear_vel; |
| A_continuous(kX, kLeftVelocity) = ctheta / 2.0; |
| A_continuous(kX, kRightVelocity) = ctheta / 2.0; |
| A_continuous(kY, kTheta) = ctheta * linear_vel; |
| A_continuous(kY, kLeftVelocity) = stheta / 2.0; |
| A_continuous(kY, kRightVelocity) = stheta / 2.0; |
| return A_continuous; |
| } |
| |
| State DiffEq(const State &X, const Input &U) const { |
| State Xdot = A_continuous_ * X + B_continuous_ * U; |
| // And then we need to add on the terms for the x/y change: |
| const Scalar theta = X(kTheta, 0); |
| const Scalar linear_vel = |
| (X(kLeftVelocity, 0) + X(kRightVelocity, 0)) / 2.0; |
| const Scalar stheta = ::std::sin(theta); |
| const Scalar ctheta = ::std::cos(theta); |
| Xdot(kX, 0) = ctheta * linear_vel; |
| Xdot(kY, 0) = stheta * linear_vel; |
| return Xdot; |
| } |
| |
| void PredictImpl(const Input &U, std::chrono::nanoseconds dt, State *state, |
| StateSquare *P) { |
| StateSquare A_c = AForState(*state); |
| StateSquare A_d; |
| StateSquare Q_d; |
| controls::DiscretizeQAFast(Q_continuous_, A_c, dt, &Q_d, &A_d); |
| |
| *state = RungeKuttaU( |
| [this](const State &X, |
| const Input &U) { return DiffEq(X, U); }, |
| *state, U, |
| ::std::chrono::duration_cast<::std::chrono::duration<double>>(dt) |
| .count()); |
| |
| StateSquare Ptemp = A_d * *P * A_d.transpose() + Q_d; |
| *P = Ptemp; |
| } |
| |
| void CorrectImpl(const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| const Output &Z, const Output &expected_Z, |
| const Eigen::Matrix<Scalar, kNOutputs, kNStates> &H, |
| State *state, StateSquare *P) { |
| Output err = Z - expected_Z; |
| Eigen::Matrix<Scalar, kNStates, kNOutputs> PH = *P * H.transpose(); |
| Eigen::Matrix<Scalar, kNOutputs, kNOutputs> S = H * PH + R; |
| Eigen::Matrix<Scalar, kNStates, kNOutputs> K = PH * S.inverse(); |
| *state += K * err; |
| StateSquare Ptemp = (StateSquare::Identity() - K * H) * *P; |
| *P = Ptemp; |
| } |
| |
| void ProcessObservation(Observation *obs, const std::chrono::nanoseconds dt, |
| State *state, StateSquare *P) { |
| *state = obs->X_hat; |
| *P = obs->P; |
| if (dt.count() != 0) { |
| PredictImpl(obs->U, dt, state, P); |
| } |
| if (!(obs->h && obs->dhdx)) { |
| CHECK(obs->make_h); |
| obs->make_h(*state, *P, &obs->h, &obs->dhdx); |
| } |
| CorrectImpl(obs->R, obs->z, obs->h(*state, obs->U), obs->dhdx(*state), |
| state, P); |
| } |
| |
| DrivetrainConfig<Scalar> dt_config_; |
| State X_hat_; |
| StateFeedbackHybridPlantCoefficients<2, 2, 2, Scalar> |
| velocity_drivetrain_coefficients_; |
| StateSquare A_continuous_; |
| StateSquare Q_continuous_; |
| StateSquare P_; |
| Eigen::Matrix<Scalar, kNOutputs, kNStates> H_encoders_and_gyro_; |
| Scalar encoder_noise_, gyro_noise_; |
| Eigen::Matrix<Scalar, kNStates, kNInputs> B_continuous_; |
| |
| bool have_zeroed_encoders_ = false; |
| |
| aos::PriorityQueue<Observation, kSaveSamples, ::std::less<Observation>> |
| observations_; |
| |
| friend class testing::HybridEkfTest; |
| friend class ::y2019::control_loops::testing::ParameterizedLocalizerTest; |
| }; // class HybridEkf |
| |
| template <typename Scalar> |
| void HybridEkf<Scalar>::Correct( |
| const Output &z, const Input *U, |
| ::std::function< |
| void(const State &, const StateSquare &, |
| ::std::function<Output(const State &, const Input &)> *, |
| ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>( |
| const State &)> *)> make_h, |
| ::std::function<Output(const State &, const Input &)> h, |
| ::std::function<Eigen::Matrix<Scalar, kNOutputs, kNStates>(const State &)> |
| dhdx, const Eigen::Matrix<Scalar, kNOutputs, kNOutputs> &R, |
| aos::monotonic_clock::time_point t) { |
| CHECK(!observations_.empty()); |
| if (!observations_.full() && t < observations_.begin()->t) { |
| LOG(ERROR, |
| "Dropped an observation that was received before we " |
| "initialized.\n"); |
| return; |
| } |
| auto cur_it = |
| observations_.PushFromBottom({t, t, State::Zero(), StateSquare::Zero(), |
| Input::Zero(), z, make_h, h, dhdx, R}); |
| if (cur_it == observations_.end()) { |
| LOG(DEBUG, |
| "Camera dropped off of end with time of %fs; earliest observation in " |
| "queue has time of %fs.\n", |
| ::std::chrono::duration_cast<::std::chrono::duration<double>>( |
| t.time_since_epoch()).count(), |
| ::std::chrono::duration_cast<::std::chrono::duration<double>>( |
| observations_.begin()->t.time_since_epoch()).count()); |
| return; |
| } |
| |
| // Now we populate any state information that depends on where the |
| // observation was inserted into the queue. X_hat and P must be populated |
| // from the values present in the observation *following* this one in |
| // the queue (note that the X_hat and P that we store in each observation |
| // is the values that they held after accounting for the previous |
| // measurement and before accounting for the time between the previous and |
| // current measurement). If we appended to the end of the queue, then |
| // we need to pull from X_hat_ and P_ specifically. |
| // Furthermore, for U: |
| // -If the observation was inserted at the end, then the user must've |
| // provided U and we use it. |
| // -Otherwise, only grab U if necessary. |
| auto next_it = cur_it; |
| ++next_it; |
| if (next_it == observations_.end()) { |
| cur_it->X_hat = X_hat_; |
| cur_it->P = P_; |
| // Note that if next_it == observations_.end(), then because we already |
| // checked for !observations_.empty(), we are guaranteed to have |
| // valid prev_it. |
| auto prev_it = cur_it; |
| --prev_it; |
| cur_it->prev_t = prev_it->t; |
| // TODO(james): Figure out a saner way of handling this. |
| CHECK(U != nullptr); |
| cur_it->U = *U; |
| } else { |
| cur_it->X_hat = next_it->X_hat; |
| cur_it->P = next_it->P; |
| cur_it->prev_t = next_it->prev_t; |
| next_it->prev_t = cur_it->t; |
| cur_it->U = (U == nullptr) ? next_it->U : *U; |
| } |
| // Now we need to rerun the predict step from the previous to the new |
| // observation as well as every following correct/predict up to the current |
| // time. |
| while (true) { |
| // We use X_hat_ and P_ to store the intermediate states, and then |
| // once we reach the end they will all be up-to-date. |
| ProcessObservation(&*cur_it, cur_it->t - cur_it->prev_t, &X_hat_, &P_); |
| CHECK(X_hat_.allFinite()); |
| if (next_it != observations_.end()) { |
| next_it->X_hat = X_hat_; |
| next_it->P = P_; |
| } else { |
| break; |
| } |
| ++cur_it; |
| ++next_it; |
| } |
| } |
| |
| template <typename Scalar> |
| void HybridEkf<Scalar>::InitializeMatrices() { |
| A_continuous_.setZero(); |
| const Scalar diameter = 2.0 * dt_config_.robot_radius; |
| // Theta derivative |
| A_continuous_(kTheta, kLeftVelocity) = -1.0 / diameter; |
| A_continuous_(kTheta, kRightVelocity) = 1.0 / diameter; |
| |
| // Encoder derivatives |
| A_continuous_(kLeftEncoder, kLeftVelocity) = 1.0; |
| A_continuous_(kLeftEncoder, kAngularError) = 1.0; |
| A_continuous_(kRightEncoder, kRightVelocity) = 1.0; |
| A_continuous_(kRightEncoder, kAngularError) = -1.0; |
| |
| // Pull velocity derivatives from velocity matrices. |
| // Note that this looks really awkward (doesn't use |
| // Eigen blocks) because someone decided that the full |
| // drivetrain Kalman Filter should half a weird convention. |
| // TODO(james): Support shifting drivetrains with changing A_continuous |
| const auto &vel_coefs = velocity_drivetrain_coefficients_; |
| A_continuous_(kLeftVelocity, kLeftVelocity) = vel_coefs.A_continuous(0, 0); |
| A_continuous_(kLeftVelocity, kRightVelocity) = vel_coefs.A_continuous(0, 1); |
| A_continuous_(kRightVelocity, kLeftVelocity) = vel_coefs.A_continuous(1, 0); |
| A_continuous_(kRightVelocity, kRightVelocity) = vel_coefs.A_continuous(1, 1); |
| |
| // Provide for voltage error terms: |
| B_continuous_.setZero(); |
| B_continuous_.row(kLeftVelocity) = vel_coefs.B_continuous.row(0); |
| B_continuous_.row(kRightVelocity) = vel_coefs.B_continuous.row(1); |
| A_continuous_.template block<kNStates, kNInputs>(0, 7) = B_continuous_; |
| |
| Q_continuous_.setZero(); |
| // TODO(james): Improve estimates of process noise--e.g., X/Y noise can |
| // probably be reduced when we are stopped because you rarely jump randomly. |
| // Or maybe it's more appropriate to scale wheelspeed noise with wheelspeed, |
| // since the wheels aren't likely to slip much stopped. |
| Q_continuous_(kX, kX) = 0.002; |
| Q_continuous_(kY, kY) = 0.002; |
| Q_continuous_(kTheta, kTheta) = 0.0002; |
| Q_continuous_(kLeftEncoder, kLeftEncoder) = ::std::pow(0.15, 2.0); |
| Q_continuous_(kRightEncoder, kRightEncoder) = ::std::pow(0.15, 2.0); |
| Q_continuous_(kLeftVelocity, kLeftVelocity) = ::std::pow(0.5, 2.0); |
| Q_continuous_(kRightVelocity, kRightVelocity) = ::std::pow(0.5, 2.0); |
| Q_continuous_(kLeftVoltageError, kLeftVoltageError) = ::std::pow(10.0, 2.0); |
| Q_continuous_(kRightVoltageError, kRightVoltageError) = ::std::pow(10.0, 2.0); |
| Q_continuous_(kAngularError, kAngularError) = ::std::pow(2.0, 2.0); |
| |
| P_.setZero(); |
| P_.diagonal() << 0.1, 0.1, 0.01, 0.02, 0.01, 0.02, 0.01, 1, 1, 0.03; |
| |
| H_encoders_and_gyro_.setZero(); |
| // Encoders are stored directly in the state matrix, so are a minor |
| // transform away. |
| H_encoders_and_gyro_(0, kLeftEncoder) = 1.0; |
| H_encoders_and_gyro_(1, kRightEncoder) = 1.0; |
| // Gyro rate is just the difference between right/left side speeds: |
| H_encoders_and_gyro_(2, kLeftVelocity) = -1.0 / diameter; |
| H_encoders_and_gyro_(2, kRightVelocity) = 1.0 / diameter; |
| |
| const Eigen::Matrix<Scalar, 4, 4> R_kf_drivetrain = |
| dt_config_.make_kf_drivetrain_loop().observer().coefficients().R; |
| // TODO(james): The multipliers here are hand-waving things that I put in when |
| // tuning things. I haven't yet tried messing with these values again. |
| encoder_noise_ = 0.5 * R_kf_drivetrain(0, 0); |
| gyro_noise_ = 0.1 * R_kf_drivetrain(2, 2); |
| } |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |
| |
| #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_HYBRID_EKF_H_ |