| #include "frc971/vision/target_mapper.h" |
| |
| #include "absl/strings/str_format.h" |
| #include "frc971/control_loops/control_loop.h" |
| #include "frc971/vision/ceres/pose_graph_3d_error_term.h" |
| #include "frc971/vision/geometry.h" |
| |
| DEFINE_uint64(max_num_iterations, 100, |
| "Maximum number of iterations for the ceres solver"); |
| |
| namespace frc971::vision { |
| |
| Eigen::Affine3d PoseUtils::Pose3dToAffine3d( |
| const ceres::examples::Pose3d &pose3d) { |
| Eigen::Affine3d H_world_pose = |
| Eigen::Translation3d(pose3d.p(0), pose3d.p(1), pose3d.p(2)) * pose3d.q; |
| return H_world_pose; |
| } |
| |
| ceres::examples::Pose3d PoseUtils::Affine3dToPose3d(const Eigen::Affine3d &H) { |
| return ceres::examples::Pose3d{.p = H.translation(), |
| .q = Eigen::Quaterniond(H.rotation())}; |
| } |
| |
| ceres::examples::Pose3d PoseUtils::ComputeRelativePose( |
| const ceres::examples::Pose3d &pose_1, |
| const ceres::examples::Pose3d &pose_2) { |
| Eigen::Affine3d H_world_1 = Pose3dToAffine3d(pose_1); |
| Eigen::Affine3d H_world_2 = Pose3dToAffine3d(pose_2); |
| |
| // Get the location of 2 in the 1 frame |
| Eigen::Affine3d H_1_2 = H_world_1.inverse() * H_world_2; |
| return Affine3dToPose3d(H_1_2); |
| } |
| |
| ceres::examples::Pose3d PoseUtils::ComputeOffsetPose( |
| const ceres::examples::Pose3d &pose_1, |
| const ceres::examples::Pose3d &pose_2_relative) { |
| auto H_world_1 = Pose3dToAffine3d(pose_1); |
| auto H_1_2 = Pose3dToAffine3d(pose_2_relative); |
| auto H_world_2 = H_world_1 * H_1_2; |
| |
| return Affine3dToPose3d(H_world_2); |
| } |
| |
| Eigen::Quaterniond PoseUtils::EulerAnglesToQuaternion( |
| const Eigen::Vector3d &rpy) { |
| Eigen::AngleAxisd roll_angle(rpy.x(), Eigen::Vector3d::UnitX()); |
| Eigen::AngleAxisd pitch_angle(rpy.y(), Eigen::Vector3d::UnitY()); |
| Eigen::AngleAxisd yaw_angle(rpy.z(), Eigen::Vector3d::UnitZ()); |
| |
| return yaw_angle * pitch_angle * roll_angle; |
| } |
| |
| Eigen::Vector3d PoseUtils::QuaternionToEulerAngles( |
| const Eigen::Quaterniond &q) { |
| return RotationMatrixToEulerAngles(q.toRotationMatrix()); |
| } |
| |
| Eigen::Vector3d PoseUtils::RotationMatrixToEulerAngles( |
| const Eigen::Matrix3d &R) { |
| double roll = aos::math::NormalizeAngle(std::atan2(R(2, 1), R(2, 2))); |
| double pitch = aos::math::NormalizeAngle(-std::asin(R(2, 0))); |
| double yaw = aos::math::NormalizeAngle(std::atan2(R(1, 0), R(0, 0))); |
| |
| return Eigen::Vector3d(roll, pitch, yaw); |
| } |
| |
| flatbuffers::Offset<TargetPoseFbs> PoseUtils::TargetPoseToFbs( |
| const TargetMapper::TargetPose &target_pose, |
| flatbuffers::FlatBufferBuilder *fbb) { |
| const auto position_offset = |
| CreatePosition(*fbb, target_pose.pose.p(0), target_pose.pose.p(1), |
| target_pose.pose.p(2)); |
| const auto orientation_offset = |
| CreateQuaternion(*fbb, target_pose.pose.q.w(), target_pose.pose.q.x(), |
| target_pose.pose.q.y(), target_pose.pose.q.z()); |
| return CreateTargetPoseFbs(*fbb, target_pose.id, position_offset, |
| orientation_offset); |
| } |
| |
| TargetMapper::TargetPose PoseUtils::TargetPoseFromFbs( |
| const TargetPoseFbs &target_pose_fbs) { |
| return {.id = static_cast<TargetMapper::TargetId>(target_pose_fbs.id()), |
| .pose = ceres::examples::Pose3d{ |
| Eigen::Vector3d(target_pose_fbs.position()->x(), |
| target_pose_fbs.position()->y(), |
| target_pose_fbs.position()->z()), |
| Eigen::Quaterniond(target_pose_fbs.orientation()->w(), |
| target_pose_fbs.orientation()->x(), |
| target_pose_fbs.orientation()->y(), |
| target_pose_fbs.orientation()->z())}}; |
| } |
| |
| ceres::examples::VectorOfConstraints DataAdapter::MatchTargetDetections( |
| const std::vector<DataAdapter::TimestampedDetection> |
| ×tamped_target_detections, |
| aos::distributed_clock::duration max_dt) { |
| CHECK_GE(timestamped_target_detections.size(), 2ul) |
| << "Must have at least 2 detections"; |
| |
| // Match consecutive detections |
| ceres::examples::VectorOfConstraints target_constraints; |
| for (auto it = timestamped_target_detections.begin() + 1; |
| it < timestamped_target_detections.end(); it++) { |
| auto last_detection = *(it - 1); |
| |
| // Skip two consecutive detections of the same target, because the solver |
| // doesn't allow this |
| if (it->id == last_detection.id) { |
| continue; |
| } |
| |
| // Don't take into account constraints too far apart in time, because the |
| // recording device could have moved too much |
| if ((it->time - last_detection.time) > max_dt) { |
| continue; |
| } |
| |
| auto confidence = ComputeConfidence(last_detection.time, it->time, |
| last_detection.distance_from_camera, |
| it->distance_from_camera); |
| target_constraints.emplace_back( |
| ComputeTargetConstraint(last_detection, *it, confidence)); |
| } |
| |
| return target_constraints; |
| } |
| |
| TargetMapper::ConfidenceMatrix DataAdapter::ComputeConfidence( |
| aos::distributed_clock::time_point start, |
| aos::distributed_clock::time_point end, double distance_from_camera_start, |
| double distance_from_camera_end) { |
| constexpr size_t kX = 0; |
| constexpr size_t kY = 1; |
| constexpr size_t kZ = 2; |
| constexpr size_t kOrientation1 = 3; |
| constexpr size_t kOrientation2 = 4; |
| constexpr size_t kOrientation3 = 5; |
| |
| // Uncertainty matrix between start and end |
| TargetMapper::ConfidenceMatrix P = TargetMapper::ConfidenceMatrix::Zero(); |
| |
| { |
| // Noise for odometry-based robot position measurements |
| TargetMapper::ConfidenceMatrix Q_odometry = |
| TargetMapper::ConfidenceMatrix::Zero(); |
| Q_odometry(kX, kX) = std::pow(0.045, 2); |
| Q_odometry(kY, kY) = std::pow(0.045, 2); |
| Q_odometry(kZ, kZ) = std::pow(0.045, 2); |
| Q_odometry(kOrientation1, kOrientation1) = std::pow(0.01, 2); |
| Q_odometry(kOrientation2, kOrientation2) = std::pow(0.01, 2); |
| Q_odometry(kOrientation3, kOrientation3) = std::pow(0.01, 2); |
| |
| // Add uncertainty for robot position measurements from start to end |
| int iterations = (end - start) / frc971::controls::kLoopFrequency; |
| P += static_cast<double>(iterations) * Q_odometry; |
| } |
| |
| { |
| // Noise for vision-based target localizations. Multiplying this matrix by |
| // the distance from camera to target squared results in the uncertainty in |
| // that measurement |
| TargetMapper::ConfidenceMatrix Q_vision = |
| TargetMapper::ConfidenceMatrix::Zero(); |
| Q_vision(kX, kX) = std::pow(0.045, 2); |
| Q_vision(kY, kY) = std::pow(0.045, 2); |
| Q_vision(kZ, kZ) = std::pow(0.045, 2); |
| Q_vision(kOrientation1, kOrientation1) = std::pow(0.02, 2); |
| Q_vision(kOrientation2, kOrientation2) = std::pow(0.02, 2); |
| Q_vision(kOrientation3, kOrientation3) = std::pow(0.02, 2); |
| |
| // Add uncertainty for the 2 vision measurements (1 at start and 1 at end) |
| P += Q_vision * std::pow(distance_from_camera_start, 2); |
| P += Q_vision * std::pow(distance_from_camera_end, 2); |
| } |
| |
| return P.inverse(); |
| } |
| |
| ceres::examples::Constraint3d DataAdapter::ComputeTargetConstraint( |
| const TimestampedDetection &target_detection_start, |
| const TimestampedDetection &target_detection_end, |
| const TargetMapper::ConfidenceMatrix &confidence) { |
| // Compute the relative pose (constraint) between the two targets |
| Eigen::Affine3d H_targetstart_targetend = |
| target_detection_start.H_robot_target.inverse() * |
| target_detection_end.H_robot_target; |
| ceres::examples::Pose3d target_constraint = |
| PoseUtils::Affine3dToPose3d(H_targetstart_targetend); |
| |
| return ceres::examples::Constraint3d{ |
| target_detection_start.id, |
| target_detection_end.id, |
| {target_constraint.p, target_constraint.q}, |
| confidence}; |
| } |
| |
| TargetMapper::TargetMapper( |
| std::string_view target_poses_path, |
| const ceres::examples::VectorOfConstraints &target_constraints) |
| : target_constraints_(target_constraints) { |
| aos::FlatbufferDetachedBuffer<TargetMap> target_map = |
| aos::JsonFileToFlatbuffer<TargetMap>(target_poses_path); |
| for (const auto *target_pose_fbs : *target_map.message().target_poses()) { |
| target_poses_[target_pose_fbs->id()] = |
| PoseUtils::TargetPoseFromFbs(*target_pose_fbs).pose; |
| } |
| } |
| |
| TargetMapper::TargetMapper( |
| const ceres::examples::MapOfPoses &target_poses, |
| const ceres::examples::VectorOfConstraints &target_constraints) |
| : target_poses_(target_poses), target_constraints_(target_constraints) {} |
| |
| std::optional<TargetMapper::TargetPose> TargetMapper::GetTargetPoseById( |
| std::vector<TargetMapper::TargetPose> target_poses, TargetId target_id) { |
| for (auto target_pose : target_poses) { |
| if (target_pose.id == target_id) { |
| return target_pose; |
| } |
| } |
| |
| return std::nullopt; |
| } |
| |
| // Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc |
| // Constructs the nonlinear least squares optimization problem from the pose |
| // graph constraints. |
| void TargetMapper::BuildOptimizationProblem( |
| const ceres::examples::VectorOfConstraints &constraints, |
| ceres::examples::MapOfPoses *poses, ceres::Problem *problem) { |
| CHECK(poses != nullptr); |
| CHECK(problem != nullptr); |
| if (constraints.empty()) { |
| LOG(INFO) << "No constraints, no problem to optimize."; |
| return; |
| } |
| |
| ceres::LossFunction *loss_function = new ceres::HuberLoss(2.0); |
| ceres::LocalParameterization *quaternion_local_parameterization = |
| new ceres::EigenQuaternionParameterization; |
| |
| for (ceres::examples::VectorOfConstraints::const_iterator constraints_iter = |
| constraints.begin(); |
| constraints_iter != constraints.end(); ++constraints_iter) { |
| const ceres::examples::Constraint3d &constraint = *constraints_iter; |
| |
| ceres::examples::MapOfPoses::iterator pose_begin_iter = |
| poses->find(constraint.id_begin); |
| CHECK(pose_begin_iter != poses->end()) |
| << "Pose with ID: " << constraint.id_begin << " not found."; |
| ceres::examples::MapOfPoses::iterator pose_end_iter = |
| poses->find(constraint.id_end); |
| CHECK(pose_end_iter != poses->end()) |
| << "Pose with ID: " << constraint.id_end << " not found."; |
| |
| const Eigen::Matrix<double, 6, 6> sqrt_information = |
| constraint.information.llt().matrixL(); |
| // Ceres will take ownership of the pointer. |
| ceres::CostFunction *cost_function = |
| ceres::examples::PoseGraph3dErrorTerm::Create(constraint.t_be, |
| sqrt_information); |
| |
| problem->AddResidualBlock(cost_function, loss_function, |
| pose_begin_iter->second.p.data(), |
| pose_begin_iter->second.q.coeffs().data(), |
| pose_end_iter->second.p.data(), |
| pose_end_iter->second.q.coeffs().data()); |
| |
| problem->SetParameterization(pose_begin_iter->second.q.coeffs().data(), |
| quaternion_local_parameterization); |
| problem->SetParameterization(pose_end_iter->second.q.coeffs().data(), |
| quaternion_local_parameterization); |
| } |
| |
| // The pose graph optimization problem has six DOFs that are not fully |
| // constrained. This is typically referred to as gauge freedom. You can |
| // apply a rigid body transformation to all the nodes and the optimization |
| // problem will still have the exact same cost. The Levenberg-Marquardt |
| // algorithm has internal damping which mitigates this issue, but it is |
| // better to properly constrain the gauge freedom. This can be done by |
| // setting one of the poses as constant so the optimizer cannot change it. |
| ceres::examples::MapOfPoses::iterator pose_start_iter = poses->begin(); |
| CHECK(pose_start_iter != poses->end()) << "There are no poses."; |
| problem->SetParameterBlockConstant(pose_start_iter->second.p.data()); |
| problem->SetParameterBlockConstant(pose_start_iter->second.q.coeffs().data()); |
| } |
| |
| // Taken from ceres/examples/slam/pose_graph_3d/pose_graph_3d.cc |
| bool TargetMapper::SolveOptimizationProblem(ceres::Problem *problem) { |
| CHECK_NOTNULL(problem); |
| |
| ceres::Solver::Options options; |
| options.max_num_iterations = FLAGS_max_num_iterations; |
| options.linear_solver_type = ceres::SPARSE_NORMAL_CHOLESKY; |
| |
| ceres::Solver::Summary summary; |
| ceres::Solve(options, problem, &summary); |
| |
| LOG(INFO) << summary.FullReport() << '\n'; |
| |
| return summary.IsSolutionUsable(); |
| } |
| |
| void TargetMapper::Solve(std::string_view field_name, |
| std::optional<std::string_view> output_dir) { |
| ceres::Problem problem; |
| BuildOptimizationProblem(target_constraints_, &target_poses_, &problem); |
| |
| CHECK(SolveOptimizationProblem(&problem)) |
| << "The solve was not successful, exiting."; |
| |
| auto map_json = MapToJson(field_name); |
| VLOG(1) << "Solved target poses: " << map_json; |
| |
| if (output_dir.has_value()) { |
| std::string output_path = |
| absl::StrCat(output_dir.value(), "/", field_name, ".json"); |
| LOG(INFO) << "Writing map to file: " << output_path; |
| aos::util::WriteStringToFileOrDie(output_path, map_json); |
| } |
| } |
| |
| std::string TargetMapper::MapToJson(std::string_view field_name) const { |
| flatbuffers::FlatBufferBuilder fbb; |
| |
| // Convert poses to flatbuffers |
| std::vector<flatbuffers::Offset<TargetPoseFbs>> target_poses_fbs; |
| for (const auto &[id, pose] : target_poses_) { |
| target_poses_fbs.emplace_back( |
| PoseUtils::TargetPoseToFbs(TargetPose{.id = id, .pose = pose}, &fbb)); |
| } |
| |
| const auto field_name_offset = fbb.CreateString(field_name); |
| flatbuffers::Offset<TargetMap> target_map_offset = CreateTargetMap( |
| fbb, fbb.CreateVector(target_poses_fbs), field_name_offset); |
| |
| return aos::FlatbufferToJson( |
| flatbuffers::GetMutableTemporaryPointer(fbb, target_map_offset), |
| {.multi_line = true}); |
| } |
| |
| std::ostream &operator<<(std::ostream &os, ceres::examples::Pose3d pose) { |
| auto rpy = PoseUtils::QuaternionToEulerAngles(pose.q); |
| os << absl::StrFormat( |
| "{x: %.3f, y: %.3f, z: %.3f, roll: %.3f, pitch: " |
| "%.3f, yaw: %.3f}", |
| pose.p(0), pose.p(1), pose.p(2), rpy(0), rpy(1), rpy(2)); |
| return os; |
| } |
| |
| std::ostream &operator<<(std::ostream &os, |
| ceres::examples::Constraint3d constraint) { |
| os << absl::StrFormat("{id_begin: %d, id_end: %d, pose: ", |
| constraint.id_begin, constraint.id_end) |
| << constraint.t_be << "}"; |
| return os; |
| } |
| |
| } // namespace frc971::vision |