| #include "frc971/vision/charuco_lib.h" |
| |
| #include <chrono> |
| #include <functional> |
| #include <opencv2/core/eigen.hpp> |
| #include <opencv2/highgui/highgui.hpp> |
| #include <opencv2/imgproc.hpp> |
| #include <string_view> |
| |
| #include "aos/events/event_loop.h" |
| #include "aos/flatbuffers.h" |
| #include "aos/network/team_number.h" |
| #include "frc971/control_loops/quaternion_utils.h" |
| #include "frc971/vision/vision_generated.h" |
| #include "glog/logging.h" |
| #include "y2020/vision/sift/sift_generated.h" |
| #include "y2020/vision/sift/sift_training_generated.h" |
| #include "y2020/vision/tools/python_code/sift_training_data.h" |
| |
| DEFINE_string(board_template_path, "", |
| "If specified, write an image to the specified path for the " |
| "charuco board pattern."); |
| DEFINE_bool(coarse_pattern, true, "If true, use coarse arucos; else, use fine"); |
| DEFINE_bool(large_board, true, "If true, use the large calibration board."); |
| DEFINE_uint32( |
| min_charucos, 10, |
| "The mininum number of aruco targets in charuco board required to match."); |
| DEFINE_bool(visualize, false, "Whether to visualize the resulting data."); |
| |
| DEFINE_uint32(disable_delay, 100, "Time after an issue to disable tracing at."); |
| |
| DECLARE_bool(enable_ftrace); |
| |
| namespace frc971 { |
| namespace vision { |
| namespace chrono = std::chrono; |
| using aos::monotonic_clock; |
| |
| CameraCalibration::CameraCalibration( |
| const absl::Span<const uint8_t> training_data_bfbs, std::string_view pi) { |
| const aos::FlatbufferSpan<sift::TrainingData> training_data( |
| training_data_bfbs); |
| CHECK(training_data.Verify()); |
| camera_calibration_ = FindCameraCalibration(&training_data.message(), pi); |
| } |
| |
| cv::Mat CameraCalibration::CameraIntrinsics() const { |
| const cv::Mat result(3, 3, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration_->intrinsics()->data()))); |
| CHECK_EQ(result.total(), camera_calibration_->intrinsics()->size()); |
| return result; |
| } |
| |
| Eigen::Matrix3d CameraCalibration::CameraIntrinsicsEigen() const { |
| cv::Mat camera_intrinsics = CameraIntrinsics(); |
| Eigen::Matrix3d result; |
| cv::cv2eigen(camera_intrinsics, result); |
| return result; |
| } |
| |
| cv::Mat CameraCalibration::CameraDistCoeffs() const { |
| const cv::Mat result(5, 1, CV_32F, |
| const_cast<void *>(static_cast<const void *>( |
| camera_calibration_->dist_coeffs()->data()))); |
| CHECK_EQ(result.total(), camera_calibration_->dist_coeffs()->size()); |
| return result; |
| } |
| |
| const sift::CameraCalibration *CameraCalibration::FindCameraCalibration( |
| const sift::TrainingData *const training_data, std::string_view pi) const { |
| std::optional<uint16_t> pi_number = aos::network::ParsePiNumber(pi); |
| std::optional<uint16_t> team_number = |
| aos::network::team_number_internal::ParsePiTeamNumber(pi); |
| CHECK(pi_number); |
| CHECK(team_number); |
| const std::string node_name = absl::StrFormat("pi%d", pi_number.value()); |
| LOG(INFO) << "Looking for node name " << node_name << " team number " |
| << team_number.value(); |
| for (const sift::CameraCalibration *candidate : |
| *training_data->camera_calibrations()) { |
| if (candidate->node_name()->string_view() != node_name) { |
| continue; |
| } |
| if (candidate->team_number() != team_number.value()) { |
| continue; |
| } |
| return candidate; |
| } |
| LOG(FATAL) << ": Failed to find camera calibration for " << node_name |
| << " on " << team_number.value(); |
| } |
| |
| ImageCallback::ImageCallback( |
| aos::EventLoop *event_loop, std::string_view channel, |
| std::function<void(cv::Mat, monotonic_clock::time_point)> &&handle_image_fn, |
| monotonic_clock::duration max_age) |
| : event_loop_(event_loop), |
| server_fetcher_( |
| event_loop_->MakeFetcher<aos::message_bridge::ServerStatistics>( |
| "/aos")), |
| source_node_(aos::configuration::GetNode( |
| event_loop_->configuration(), |
| event_loop_->GetChannel<CameraImage>(channel) |
| ->source_node() |
| ->string_view())), |
| handle_image_(std::move(handle_image_fn)), |
| timer_fn_(event_loop->AddTimer([this]() { DisableTracing(); })), |
| max_age_(max_age) { |
| event_loop_->MakeWatcher(channel, [this](const CameraImage &image) { |
| const monotonic_clock::time_point eof_source_node = |
| monotonic_clock::time_point( |
| chrono::nanoseconds(image.monotonic_timestamp_ns())); |
| chrono::nanoseconds offset{0}; |
| if (source_node_ != event_loop_->node()) { |
| server_fetcher_.Fetch(); |
| if (!server_fetcher_.get()) { |
| return; |
| } |
| |
| // If we are viewing this image from another node, convert to our |
| // monotonic clock. |
| const aos::message_bridge::ServerConnection *server_connection = nullptr; |
| |
| for (const aos::message_bridge::ServerConnection *connection : |
| *server_fetcher_->connections()) { |
| CHECK(connection->has_node()); |
| if (connection->node()->name()->string_view() == |
| source_node_->name()->string_view()) { |
| server_connection = connection; |
| break; |
| } |
| } |
| |
| CHECK(server_connection != nullptr) << ": Failed to find client"; |
| if (!server_connection->has_monotonic_offset()) { |
| VLOG(1) << "No offset yet."; |
| return; |
| } |
| offset = chrono::nanoseconds(server_connection->monotonic_offset()); |
| } |
| |
| const monotonic_clock::time_point eof = eof_source_node - offset; |
| |
| const monotonic_clock::duration age = event_loop_->monotonic_now() - eof; |
| const double age_double = |
| std::chrono::duration_cast<std::chrono::duration<double>>(age).count(); |
| if (age > max_age_) { |
| if (FLAGS_enable_ftrace) { |
| ftrace_.FormatMessage("Too late receiving image, age: %f\n", |
| age_double); |
| if (FLAGS_disable_delay > 0) { |
| if (!disabling_) { |
| timer_fn_->Setup(event_loop_->monotonic_now() + |
| chrono::milliseconds(FLAGS_disable_delay)); |
| disabling_ = true; |
| } |
| } else { |
| DisableTracing(); |
| } |
| } |
| VLOG(2) << "Age: " << age_double << ", getting behind, skipping"; |
| return; |
| } |
| // Create color image: |
| cv::Mat image_color_mat(cv::Size(image.cols(), image.rows()), CV_8UC2, |
| (void *)image.data()->data()); |
| const cv::Size image_size(image.cols(), image.rows()); |
| switch (format_) { |
| case Format::GRAYSCALE: { |
| ftrace_.FormatMessage("Starting yuyv->greyscale\n"); |
| cv::Mat gray_image(image_size, CV_8UC3); |
| cv::cvtColor(image_color_mat, gray_image, cv::COLOR_YUV2GRAY_YUYV); |
| handle_image_(gray_image, eof); |
| } break; |
| case Format::BGR: { |
| cv::Mat rgb_image(image_size, CV_8UC3); |
| cv::cvtColor(image_color_mat, rgb_image, cv::COLOR_YUV2BGR_YUYV); |
| handle_image_(rgb_image, eof); |
| } break; |
| case Format::YUYV2: { |
| handle_image_(image_color_mat, eof); |
| }; |
| } |
| }); |
| } |
| |
| void ImageCallback::DisableTracing() { |
| disabling_ = false; |
| ftrace_.TurnOffOrDie(); |
| } |
| |
| void CharucoExtractor::SetupTargetData() { |
| // TODO(Jim): Put correct values here |
| marker_length_ = 0.15; |
| square_length_ = 0.1651; |
| |
| // Only charuco board has a board associated with it |
| board_ = static_cast<cv::Ptr<cv::aruco::CharucoBoard>>(NULL); |
| |
| if (target_type_ == TargetType::kCharuco || |
| target_type_ == TargetType::kAruco) { |
| dictionary_ = cv::aruco::getPredefinedDictionary( |
| FLAGS_large_board ? cv::aruco::DICT_5X5_250 : cv::aruco::DICT_6X6_250); |
| |
| if (target_type_ == TargetType::kCharuco) { |
| LOG(INFO) << "Using " << (FLAGS_large_board ? " large " : " small ") |
| << " charuco board with " |
| << (FLAGS_coarse_pattern ? "coarse" : "fine") << " pattern"; |
| board_ = |
| (FLAGS_large_board |
| ? (FLAGS_coarse_pattern ? cv::aruco::CharucoBoard::create( |
| 12, 9, 0.06, 0.04666, dictionary_) |
| : cv::aruco::CharucoBoard::create( |
| 25, 18, 0.03, 0.0233, dictionary_)) |
| : (FLAGS_coarse_pattern ? cv::aruco::CharucoBoard::create( |
| 7, 5, 0.04, 0.025, dictionary_) |
| // TODO(jim): Need to figure out what |
| // size is for small board, fine pattern |
| : cv::aruco::CharucoBoard::create( |
| 7, 5, 0.03, 0.0233, dictionary_))); |
| if (!FLAGS_board_template_path.empty()) { |
| cv::Mat board_image; |
| board_->draw(cv::Size(600, 500), board_image, 10, 1); |
| cv::imwrite(FLAGS_board_template_path, board_image); |
| } |
| } |
| } else if (target_type_ == TargetType::kCharucoDiamond) { |
| // TODO<Jim>: Measure this |
| marker_length_ = 0.15; |
| square_length_ = 0.1651; |
| dictionary_ = cv::aruco::getPredefinedDictionary(cv::aruco::DICT_4X4_250); |
| } else { |
| // Bail out if it's not a supported target |
| LOG(FATAL) << "Target type undefined: " |
| << static_cast<uint8_t>(target_type_); |
| } |
| } |
| |
| void CharucoExtractor::DrawTargetPoses(cv::Mat rgb_image, |
| std::vector<cv::Vec3d> rvecs, |
| std::vector<cv::Vec3d> tvecs) { |
| const Eigen::Matrix<double, 3, 4> camera_projection = |
| Eigen::Matrix<double, 3, 4>::Identity(); |
| |
| int x_coord = 10; |
| int y_coord = 0; |
| // draw axis for each marker |
| for (uint i = 0; i < rvecs.size(); i++) { |
| Eigen::Vector3d rvec_eigen, tvec_eigen; |
| cv::cv2eigen(rvecs[i], rvec_eigen); |
| cv::cv2eigen(tvecs[i], tvec_eigen); |
| |
| Eigen::Quaternion<double> rotation( |
| frc971::controls::ToQuaternionFromRotationVector(rvec_eigen)); |
| Eigen::Translation3d translation(tvec_eigen); |
| |
| const Eigen::Affine3d board_to_camera = translation * rotation; |
| |
| Eigen::Vector3d result = eigen_camera_matrix_ * camera_projection * |
| board_to_camera * Eigen::Vector3d::Zero(); |
| |
| // Found that drawAxis hangs if you try to draw with z values too |
| // small (trying to draw axes at inifinity) |
| // TODO<Jim>: Explore what real thresholds for this should be; |
| // likely Don't need to get rid of negative values |
| if (result.z() < 0.01) { |
| LOG(INFO) << "Skipping, due to z value too small: " << result.z(); |
| } else { |
| result /= result.z(); |
| if (target_type_ == TargetType::kCharuco) { |
| cv::aruco::drawAxis(rgb_image, camera_matrix_, dist_coeffs_, rvecs[i], |
| tvecs[i], 0.1); |
| } else { |
| cv::drawFrameAxes(rgb_image, camera_matrix_, dist_coeffs_, rvecs[i], |
| tvecs[i], 0.1); |
| } |
| } |
| std::stringstream ss; |
| ss << "tvec[" << i << "] = " << tvecs[i]; |
| y_coord += 25; |
| cv::putText(rgb_image, ss.str(), cv::Point(x_coord, y_coord), |
| cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(255, 255, 255)); |
| ss.str(""); |
| ss << "rvec[" << i << "] = " << rvecs[i]; |
| y_coord += 25; |
| cv::putText(rgb_image, ss.str(), cv::Point(x_coord, y_coord), |
| cv::FONT_HERSHEY_PLAIN, 1.0, cv::Scalar(255, 255, 255)); |
| } |
| } |
| |
| void CharucoExtractor::PackPoseResults( |
| std::vector<cv::Vec3d> &rvecs, std::vector<cv::Vec3d> &tvecs, |
| std::vector<Eigen::Vector3d> *rvecs_eigen, |
| std::vector<Eigen::Vector3d> *tvecs_eigen) { |
| for (cv::Vec3d rvec : rvecs) { |
| Eigen::Vector3d rvec_eigen = Eigen::Vector3d::Zero(); |
| cv::cv2eigen(rvec, rvec_eigen); |
| rvecs_eigen->emplace_back(rvec_eigen); |
| } |
| |
| for (cv::Vec3d tvec : tvecs) { |
| Eigen::Vector3d tvec_eigen = Eigen::Vector3d::Zero(); |
| cv::cv2eigen(tvec, tvec_eigen); |
| tvecs_eigen->emplace_back(tvec_eigen); |
| } |
| } |
| |
| CharucoExtractor::CharucoExtractor( |
| aos::EventLoop *event_loop, std::string_view pi, TargetType target_type, |
| std::string_view image_channel, |
| std::function<void(cv::Mat, monotonic_clock::time_point, |
| std::vector<cv::Vec4i>, |
| std::vector<std::vector<cv::Point2f>>, bool, |
| std::vector<Eigen::Vector3d>, |
| std::vector<Eigen::Vector3d>)> &&handle_charuco_fn) |
| : event_loop_(event_loop), |
| calibration_(SiftTrainingData(), pi), |
| target_type_(target_type), |
| image_channel_(image_channel), |
| camera_matrix_(calibration_.CameraIntrinsics()), |
| eigen_camera_matrix_(calibration_.CameraIntrinsicsEigen()), |
| dist_coeffs_(calibration_.CameraDistCoeffs()), |
| pi_number_(aos::network::ParsePiNumber(pi)), |
| handle_charuco_(std::move(handle_charuco_fn)) { |
| SetupTargetData(); |
| |
| LOG(INFO) << "Camera matrix " << camera_matrix_; |
| LOG(INFO) << "Distortion Coefficients " << dist_coeffs_; |
| |
| CHECK(pi_number_) << ": Invalid pi number " << pi |
| << ", failed to parse pi number"; |
| |
| LOG(INFO) << "Connecting to channel " << image_channel_; |
| } |
| |
| void CharucoExtractor::HandleImage(cv::Mat rgb_image, |
| const monotonic_clock::time_point eof) { |
| const double age_double = |
| std::chrono::duration_cast<std::chrono::duration<double>>( |
| event_loop_->monotonic_now() - eof) |
| .count(); |
| |
| // Set up the variables we'll use in the callback function |
| bool valid = false; |
| // Return a list of poses; for Charuco Board there will be just one |
| std::vector<Eigen::Vector3d> rvecs_eigen; |
| std::vector<Eigen::Vector3d> tvecs_eigen; |
| |
| // ids and corners for initial aruco marker detections |
| std::vector<int> marker_ids; |
| std::vector<std::vector<cv::Point2f>> marker_corners; |
| |
| // ids and corners for final, refined board / marker detections |
| // Using Vec4i type since it supports Charuco Diamonds |
| // And overloading it using 1st int in Vec4i for others target types |
| std::vector<cv::Vec4i> result_ids; |
| std::vector<std::vector<cv::Point2f>> result_corners; |
| |
| // Do initial marker detection; this is the same for all target types |
| cv::aruco::detectMarkers(rgb_image, dictionary_, marker_corners, marker_ids); |
| cv::aruco::drawDetectedMarkers(rgb_image, marker_corners, marker_ids); |
| |
| VLOG(2) << "Handle Image, with target type = " |
| << static_cast<uint8_t>(target_type_) << " and " << marker_ids.size() |
| << " markers detected initially"; |
| |
| if (marker_ids.size() == 0) { |
| VLOG(2) << "Didn't find any markers"; |
| } else { |
| if (target_type_ == TargetType::kCharuco) { |
| std::vector<int> charuco_ids; |
| std::vector<cv::Point2f> charuco_corners; |
| |
| // If enough aruco markers detected for the Charuco board |
| if (marker_ids.size() >= FLAGS_min_charucos) { |
| // Run everything twice, once with the calibration, and once |
| // without. This lets us both collect data to calibrate the |
| // intrinsics of the camera (to determine the intrinsics from |
| // multiple samples), and also to use data from a previous/stored |
| // calibration to determine a more accurate pose in real time (used |
| // for extrinsics calibration) |
| cv::aruco::interpolateCornersCharuco(marker_corners, marker_ids, |
| rgb_image, board_, charuco_corners, |
| charuco_ids); |
| |
| std::vector<cv::Point2f> charuco_corners_with_calibration; |
| std::vector<int> charuco_ids_with_calibration; |
| |
| // This call uses a previous intrinsic calibration to get more |
| // accurate marker locations, for a better pose estimate |
| cv::aruco::interpolateCornersCharuco( |
| marker_corners, marker_ids, rgb_image, board_, |
| charuco_corners_with_calibration, charuco_ids_with_calibration, |
| camera_matrix_, dist_coeffs_); |
| |
| if (charuco_ids.size() >= FLAGS_min_charucos) { |
| cv::aruco::drawDetectedCornersCharuco( |
| rgb_image, charuco_corners, charuco_ids, cv::Scalar(255, 0, 0)); |
| |
| cv::Vec3d rvec, tvec; |
| valid = cv::aruco::estimatePoseCharucoBoard( |
| charuco_corners_with_calibration, charuco_ids_with_calibration, |
| board_, camera_matrix_, dist_coeffs_, rvec, tvec); |
| |
| // if charuco pose is valid, return pose, with ids and corners |
| if (valid) { |
| std::vector<cv::Vec3d> rvecs, tvecs; |
| rvecs.emplace_back(rvec); |
| tvecs.emplace_back(tvec); |
| DrawTargetPoses(rgb_image, rvecs, tvecs); |
| |
| PackPoseResults(rvecs, tvecs, &rvecs_eigen, &tvecs_eigen); |
| // Store the corners without calibration, since we use them to |
| // do calibration |
| result_corners.emplace_back(charuco_corners); |
| for (auto id : charuco_ids) { |
| result_ids.emplace_back(cv::Vec4i{id, 0, 0, 0}); |
| } |
| } else { |
| VLOG(2) << "Age: " << age_double << ", invalid charuco board pose"; |
| } |
| } else { |
| VLOG(2) << "Age: " << age_double << ", not enough charuco IDs, got " |
| << charuco_ids.size() << ", needed " << FLAGS_min_charucos; |
| } |
| } else { |
| VLOG(2) << "Age: " << age_double |
| << ", not enough marker IDs for charuco board, got " |
| << marker_ids.size() << ", needed " << FLAGS_min_charucos; |
| } |
| } else if (target_type_ == TargetType::kAruco) { |
| // estimate pose for arucos doesn't return valid, so marking true |
| valid = true; |
| std::vector<cv::Vec3d> rvecs, tvecs; |
| cv::aruco::estimatePoseSingleMarkers(marker_corners, square_length_, |
| camera_matrix_, dist_coeffs_, rvecs, |
| tvecs); |
| DrawTargetPoses(rgb_image, rvecs, tvecs); |
| |
| PackPoseResults(rvecs, tvecs, &rvecs_eigen, &tvecs_eigen); |
| for (uint i = 0; i < marker_ids.size(); i++) { |
| result_ids.emplace_back(cv::Vec4i{marker_ids[i], 0, 0, 0}); |
| } |
| result_corners = marker_corners; |
| } else if (target_type_ == TargetType::kCharucoDiamond) { |
| // Extract the diamonds associated with the markers |
| std::vector<cv::Vec4i> diamond_ids; |
| std::vector<std::vector<cv::Point2f>> diamond_corners; |
| cv::aruco::detectCharucoDiamond(rgb_image, marker_corners, marker_ids, |
| square_length_ / marker_length_, |
| diamond_corners, diamond_ids); |
| |
| // Check to see if we found any diamond targets |
| if (diamond_ids.size() > 0) { |
| cv::aruco::drawDetectedDiamonds(rgb_image, diamond_corners, |
| diamond_ids); |
| |
| // estimate pose for diamonds doesn't return valid, so marking true |
| valid = true; |
| std::vector<cv::Vec3d> rvecs, tvecs; |
| cv::aruco::estimatePoseSingleMarkers(diamond_corners, square_length_, |
| camera_matrix_, dist_coeffs_, |
| rvecs, tvecs); |
| DrawTargetPoses(rgb_image, rvecs, tvecs); |
| |
| PackPoseResults(rvecs, tvecs, &rvecs_eigen, &tvecs_eigen); |
| result_ids = diamond_ids; |
| result_corners = diamond_corners; |
| } else { |
| VLOG(2) << "Found aruco markers, but no charuco diamond targets"; |
| } |
| } else { |
| LOG(FATAL) << "Unknown target type: " |
| << static_cast<uint8_t>(target_type_); |
| } |
| } |
| |
| handle_charuco_(rgb_image, eof, result_ids, result_corners, valid, |
| rvecs_eigen, tvecs_eigen); |
| } |
| |
| flatbuffers::Offset<foxglove::ImageAnnotations> BuildAnnotations( |
| const aos::monotonic_clock::time_point monotonic_now, |
| const std::vector<std::vector<cv::Point2f>> &corners, |
| flatbuffers::FlatBufferBuilder *fbb) { |
| std::vector<flatbuffers::Offset<foxglove::PointsAnnotation>> rectangles; |
| const struct timespec now_t = aos::time::to_timespec(monotonic_now); |
| foxglove::Time time{static_cast<uint32_t>(now_t.tv_sec), |
| static_cast<uint32_t>(now_t.tv_nsec)}; |
| const flatbuffers::Offset<foxglove::Color> color_offset = |
| foxglove::CreateColor(*fbb, 0.0, 1.0, 0.0, 1.0); |
| for (const std::vector<cv::Point2f> &rectangle : corners) { |
| std::vector<flatbuffers::Offset<foxglove::Point2>> points_offsets; |
| for (const cv::Point2f &point : rectangle) { |
| points_offsets.push_back(foxglove::CreatePoint2(*fbb, point.x, point.y)); |
| } |
| const flatbuffers::Offset< |
| flatbuffers::Vector<flatbuffers::Offset<foxglove::Point2>>> |
| points_offset = fbb->CreateVector(points_offsets); |
| std::vector<flatbuffers::Offset<foxglove::Color>> color_offsets( |
| points_offsets.size(), color_offset); |
| auto colors_offset = fbb->CreateVector(color_offsets); |
| foxglove::PointsAnnotation::Builder points_builder(*fbb); |
| points_builder.add_timestamp(&time); |
| points_builder.add_type(foxglove::PointsAnnotationType::POINTS); |
| points_builder.add_points(points_offset); |
| points_builder.add_outline_color(color_offset); |
| points_builder.add_outline_colors(colors_offset); |
| points_builder.add_thickness(2.0); |
| rectangles.push_back(points_builder.Finish()); |
| } |
| |
| const auto rectangles_offset = fbb->CreateVector(rectangles); |
| foxglove::ImageAnnotations::Builder annotation_builder(*fbb); |
| annotation_builder.add_points(rectangles_offset); |
| return annotation_builder.Finish(); |
| } |
| |
| } // namespace vision |
| } // namespace frc971 |