blob: f4c2e39c4e7ddcc257488ea863149cc5c34b19b7 [file] [log] [blame]
#include "yolov5.h"
#pragma clang diagnostic ignored "-Wunused-parameter"
#include <tensorflow/lite/c/common.h>
#include <tensorflow/lite/interpreter.h>
#include <tensorflow/lite/kernels/register.h>
#include <tensorflow/lite/model.h>
#include <tflite/public/edgetpu.h>
#include <tflite/public/edgetpu_c.h>
#include <chrono>
#include <string>
#include "absl/flags/flag.h"
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "absl/types/span.h"
#include <opencv2/dnn.hpp>
ABSL_FLAG(double, conf_threshold, 0.9,
"Threshold value for confidence scores. Detections with a "
"confidence score below this value will be ignored.");
ABSL_FLAG(double, nms_threshold, 0.5,
"Threshold value for non-maximum suppression. Detections with an "
"intersection-over-union value below this value will be removed.");
ABSL_FLAG(int32_t, nthreads, 6, "Number of threads to use during inference.");
ABSL_FLAG(bool, visualize_detections, false, "Display inference output");
namespace y2023::vision {
class YOLOV5Impl : public YOLOV5 {
public:
// Takes a model path as string and and loads a pre-trained
// YOLOv5 model from the specified path.
void LoadModel(const std::string path);
// Takes an image and returns a Detection.
std::vector<Detection> ProcessImage(cv::Mat image);
private:
// Convert an OpenCV Mat object to a tensor input
// that can be fed to the TensorFlow Lite model.
void ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor);
// Resizes, converts color space, and converts
// image data type before inference.
void Preprocess(cv::Mat image);
// Converts a TensorFlow Lite tensor to a 2D vector.
std::vector<std::vector<float>> TensorToVector2D(TfLiteTensor *src_tensor,
const int rows,
const int columns);
// Performs non-maximum suppression to remove overlapping bounding boxes.
std::vector<Detection> NonMaximumSupression(
const std::vector<std::vector<float>> &orig_preds, const int rows,
const int columns, std::vector<Detection> *detections,
std::vector<int> *indices);
// Models
std::unique_ptr<tflite::FlatBufferModel> model_;
std::unique_ptr<tflite::Interpreter> interpreter_;
tflite::StderrReporter error_reporter_;
// Parameters of interpreter's input
int input_;
int in_height_;
int in_width_;
int in_channels_;
int in_type_;
// Parameters of original image
int img_height_;
int img_width_;
// Input of the interpreter
absl::Span<uint8_t> input_8_;
// Subtract this offset from class labels to get the actual label.
static constexpr int kClassIdOffset = 5;
};
std::unique_ptr<YOLOV5> MakeYOLOV5() { return std::make_unique<YOLOV5Impl>(); }
void YOLOV5Impl::LoadModel(const std::string path) {
VLOG(1) << "Load model: Start";
tflite::ops::builtin::BuiltinOpResolver resolver;
model_ = tflite::FlatBufferModel::VerifyAndBuildFromFile(path.c_str());
CHECK(model_);
CHECK(model_->initialized());
VLOG(1) << "Load model: Build model from file success";
CHECK_EQ(tflite::InterpreterBuilder(*model_, resolver)(&interpreter_),
kTfLiteOk);
VLOG(1) << "Load model: Interpreter builder success";
size_t num_devices;
std::unique_ptr<edgetpu_device, decltype(&edgetpu_free_devices)> devices(
edgetpu_list_devices(&num_devices), &edgetpu_free_devices);
CHECK_EQ(num_devices, 1ul);
const auto &device = devices.get()[0];
VLOG(1) << "Load model: Got Devices";
auto *delegate =
edgetpu_create_delegate(device.type, device.path, nullptr, 0);
interpreter_->ModifyGraphWithDelegate(delegate);
VLOG(1) << "Load model: Modify graph with delegate complete";
TfLiteStatus status = interpreter_->AllocateTensors();
CHECK_EQ(status, kTfLiteOk);
CHECK(interpreter_);
VLOG(1) << "Load model: Allocate tensors success";
input_ = interpreter_->inputs()[0];
TfLiteIntArray *dims = interpreter_->tensor(input_)->dims;
in_height_ = dims->data[1];
in_width_ = dims->data[2];
in_channels_ = dims->data[3];
in_type_ = interpreter_->tensor(input_)->type;
int tensor_size = 1;
for (int i = 0; i < dims->size; i++) {
tensor_size *= dims->data[i];
}
input_8_ =
absl::Span(interpreter_->typed_tensor<uint8_t>(input_), tensor_size);
interpreter_->SetNumThreads(absl::GetFlag(FLAGS_nthreads));
VLOG(1) << "Load model: Done";
}
void YOLOV5Impl::ConvertCVMatToTensor(cv::Mat src, absl::Span<uint8_t> tensor) {
CHECK(src.type() == CV_8UC3);
int n = 0, nc = src.channels(), ne = src.elemSize();
VLOG(2) << "ConvertCVMatToTensor: Rows " << src.rows;
VLOG(2) << "ConvertCVMatToTensor: Cols " << src.cols;
for (int y = 0; y < src.rows; ++y) {
auto *row_ptr = src.ptr<uint8_t>(y);
for (int x = 0; x < src.cols; ++x) {
for (int c = 0; c < nc; ++c) {
tensor[n++] = *(row_ptr + x * ne + c);
}
}
}
}
std::vector<std::vector<float>> YOLOV5Impl::TensorToVector2D(
TfLiteTensor *src_tensor, const int rows, const int columns) {
auto scale = src_tensor->params.scale;
auto zero_point = src_tensor->params.zero_point;
std::vector<std::vector<float>> result_vec;
for (int32_t i = 0; i < rows; i++) {
std::vector<float> row_values;
for (int32_t j = 0; j < columns; j++) {
float val_float =
((static_cast<int32_t>(src_tensor->data.uint8[i * columns + j])) -
zero_point) *
scale;
row_values.push_back(val_float);
}
result_vec.push_back(row_values);
}
return result_vec;
}
std::vector<Detection> YOLOV5Impl::NonMaximumSupression(
const std::vector<std::vector<float>> &orig_preds, const int rows,
const int columns, std::vector<Detection> *detections,
std::vector<int> *indices)
{
std::vector<float> scores;
double confidence;
cv::Point class_id;
for (int i = 0; i < rows; i++) {
if (orig_preds[i][4] > absl::GetFlag(FLAGS_conf_threshold)) {
float x = orig_preds[i][0];
float y = orig_preds[i][1];
float w = orig_preds[i][2];
float h = orig_preds[i][3];
int left = static_cast<int>((x - 0.5 * w) * img_width_);
int top = static_cast<int>((y - 0.5 * h) * img_height_);
int width = static_cast<int>(w * img_width_);
int height = static_cast<int>(h * img_height_);
for (int j = 5; j < columns; j++) {
scores.push_back(orig_preds[i][j] * orig_preds[i][4]);
}
cv::minMaxLoc(scores, nullptr, &confidence, nullptr, &class_id);
scores.clear();
if (confidence > absl::GetFlag(FLAGS_conf_threshold)) {
Detection detection{cv::Rect(left, top, width, height), confidence,
class_id.x};
detections->push_back(detection);
}
}
}
std::vector<cv::Rect> boxes;
std::vector<float> confidences;
for (const Detection &d : *detections) {
boxes.push_back(d.box);
confidences.push_back(d.confidence);
}
cv::dnn::NMSBoxes(boxes, confidences, absl::GetFlag(FLAGS_conf_threshold),
absl::GetFlag(FLAGS_nms_threshold), *indices);
std::vector<Detection> filtered_detections;
for (size_t i = 0; i < indices->size(); i++) {
filtered_detections.push_back((*detections)[(*indices)[i]]);
}
VLOG(1) << "NonMaximumSupression: " << detections->size() - indices->size()
<< " detections filtered out";
return filtered_detections;
}
std::vector<Detection> YOLOV5Impl::ProcessImage(cv::Mat frame) {
VLOG(1) << "\n";
auto start = std::chrono::high_resolution_clock::now();
img_height_ = frame.rows;
img_width_ = frame.cols;
cv::resize(frame, frame, cv::Size(in_height_, in_width_), cv::INTER_CUBIC);
cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
frame.convertTo(frame, CV_8U);
ConvertCVMatToTensor(frame, input_8_);
TfLiteStatus status = interpreter_->Invoke();
CHECK_EQ(status, kTfLiteOk);
int output_tensor_index = interpreter_->outputs()[0];
TfLiteIntArray *out_dims = interpreter_->tensor(output_tensor_index)->dims;
int num_rows = out_dims->data[1];
int num_columns = out_dims->data[2];
TfLiteTensor *src_tensor = interpreter_->tensor(interpreter_->outputs()[0]);
std::vector<std::vector<float>> orig_preds =
TensorToVector2D(src_tensor, num_rows, num_columns);
std::vector<int> indices;
std::vector<Detection> detections;
std::vector<Detection> filtered_detections;
filtered_detections = NonMaximumSupression(orig_preds, num_rows, num_columns,
&detections, &indices);
VLOG(1) << "---";
for (size_t i = 0; i < filtered_detections.size(); i++) {
VLOG(1) << "Detection #" << i << " | Class ID #"
<< filtered_detections[i].class_id << " @ "
<< filtered_detections[i].confidence << " confidence";
}
VLOG(1) << "---";
auto stop = std::chrono::high_resolution_clock::now();
VLOG(1) << "Inference time: "
<< std::chrono::duration_cast<std::chrono::milliseconds>(stop - start)
.count();
if (absl::GetFlag(FLAGS_visualize_detections)) {
cv::resize(frame, frame, cv::Size(img_width_, img_height_), 0, 0, true);
for (size_t i = 0; i < filtered_detections.size(); i++) {
VLOG(1) << "Bounding Box | X: " << filtered_detections[i].box.x
<< " Y: " << filtered_detections[i].box.y
<< " W: " << filtered_detections[i].box.width
<< " H: " << filtered_detections[i].box.height;
cv::rectangle(frame, filtered_detections[i].box, cv::Scalar(255, 0, 0),
2);
cv::putText(
frame,
"#" + std::to_string(filtered_detections[i].class_id) + " at " +
std::to_string(filtered_detections[i].confidence) + " confidence",
cv::Point(filtered_detections[i].box.x, filtered_detections[i].box.y),
cv::FONT_HERSHEY_COMPLEX, 1.0, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
}
cv::cvtColor(frame, frame, cv::COLOR_BGR2RGB);
cv::imshow("yolo", frame);
cv::waitKey(10);
}
return filtered_detections;
};
} // namespace y2023::vision