blob: db9a4f25bd41ddac728367f3967beac284f811bb [file] [log] [blame]
#include "y2023/vision/aprilrobotics.h"
#include "absl/flags/flag.h"
#include <opencv2/highgui.hpp>
#include "y2023/vision/vision_util.h"
ABSL_FLAG(
bool, debug, false,
"If true, dump a ton of debug and crash on the first valid detection.");
ABSL_FLAG(double, min_decision_margin, 50.0,
"Minimum decision margin (confidence) for an apriltag detection");
ABSL_FLAG(int32_t, pixel_border, 10,
"Size of image border within which to reject detected corners");
ABSL_FLAG(
double, max_expected_distortion, 0.314,
"Maximum expected value for unscaled distortion factors. Will scale "
"distortion factors so that this value (and a higher distortion) maps to "
"1.0.");
ABSL_FLAG(uint64_t, pose_estimation_iterations, 50,
"Number of iterations for apriltag pose estimation.");
namespace y2023::vision {
namespace chrono = std::chrono;
// Set max age on image for processing at 20 ms. For 60Hz, we should be
// processing at least every 16.7ms
constexpr aos::monotonic_clock::duration kMaxImageAge =
std::chrono::milliseconds(20);
AprilRoboticsDetector::AprilRoboticsDetector(aos::EventLoop *event_loop,
std::string_view channel_name,
bool flip_image)
: calibration_data_(event_loop),
image_size_(0, 0),
flip_image_(flip_image),
node_name_(event_loop->node()->name()->string_view()),
ftrace_(),
image_callback_(
event_loop, channel_name,
[this](cv::Mat image_color_mat,
const aos::monotonic_clock::time_point eof) {
HandleImage(image_color_mat, eof);
},
kMaxImageAge),
target_map_sender_(
event_loop->MakeSender<frc971::vision::TargetMap>("/camera")),
image_annotations_sender_(
event_loop->MakeSender<foxglove::ImageAnnotations>("/camera")),
rejections_(0) {
tag_family_ = tag16h5_create();
tag_detector_ = apriltag_detector_create();
apriltag_detector_add_family_bits(tag_detector_, tag_family_, 1);
tag_detector_->nthreads = 6;
tag_detector_->wp = workerpool_create(tag_detector_->nthreads);
tag_detector_->qtp.min_white_black_diff = 5;
tag_detector_->debug = absl::GetFlag(FLAGS_debug);
std::string hostname = aos::network::GetHostname();
// Check team string is valid
calibration_ = FindCameraCalibration(
calibration_data_.constants(), event_loop->node()->name()->string_view());
extrinsics_ = CameraExtrinsics(calibration_);
intrinsics_ = CameraIntrinsics(calibration_);
// Create an undistort projection matrix using the intrinsics
projection_matrix_ = cv::Mat::zeros(3, 4, CV_64F);
intrinsics_.rowRange(0, 3).colRange(0, 3).copyTo(
projection_matrix_.rowRange(0, 3).colRange(0, 3));
dist_coeffs_ = CameraDistCoeffs(calibration_);
image_callback_.set_format(frc971::vision::ImageCallback::Format::GRAYSCALE);
}
AprilRoboticsDetector::~AprilRoboticsDetector() {
apriltag_detector_destroy(tag_detector_);
free(tag_family_);
}
void AprilRoboticsDetector::SetWorkerpoolAffinities() {
for (int i = 0; i < tag_detector_->wp->nthreads; i++) {
cpu_set_t affinity;
CPU_ZERO(&affinity);
CPU_SET(i, &affinity);
pthread_setaffinity_np(tag_detector_->wp->threads[i], sizeof(affinity),
&affinity);
struct sched_param param;
param.sched_priority = 20;
int res = pthread_setschedparam(tag_detector_->wp->threads[i], SCHED_FIFO,
&param);
PCHECK(res == 0) << "Failed to set priority of threadpool threads";
}
}
void AprilRoboticsDetector::HandleImage(cv::Mat image_grayscale,
aos::monotonic_clock::time_point eof) {
image_size_ = image_grayscale.size();
DetectionResult result = DetectTags(image_grayscale, eof);
auto builder = target_map_sender_.MakeBuilder();
std::vector<flatbuffers::Offset<frc971::vision::TargetPoseFbs>> target_poses;
for (auto &detection : result.detections) {
auto *fbb = builder.fbb();
auto pose = BuildTargetPose(detection, fbb);
DestroyPose(&detection.pose);
target_poses.emplace_back(pose);
}
const auto target_poses_offset = builder.fbb()->CreateVector(target_poses);
auto target_map_builder = builder.MakeBuilder<frc971::vision::TargetMap>();
target_map_builder.add_target_poses(target_poses_offset);
target_map_builder.add_monotonic_timestamp_ns(eof.time_since_epoch().count());
target_map_builder.add_rejections(result.rejections);
builder.CheckOk(builder.Send(target_map_builder.Finish()));
}
flatbuffers::Offset<frc971::vision::TargetPoseFbs>
AprilRoboticsDetector::BuildTargetPose(const Detection &detection,
flatbuffers::FlatBufferBuilder *fbb) {
const auto T =
Eigen::Translation3d(detection.pose.t->data[0], detection.pose.t->data[1],
detection.pose.t->data[2]);
const auto position_offset =
frc971::vision::CreatePosition(*fbb, T.x(), T.y(), T.z());
// Aprilrobotics stores the rotation matrix in row-major order
const auto orientation = Eigen::Quaterniond(
Eigen::Matrix<double, 3, 3, Eigen::RowMajor>(detection.pose.R->data));
const auto orientation_offset = frc971::vision::CreateQuaternion(
*fbb, orientation.w(), orientation.x(), orientation.y(), orientation.z());
return frc971::vision::CreateTargetPoseFbs(
*fbb, detection.det.id, position_offset, orientation_offset,
detection.det.decision_margin, detection.pose_error,
detection.distortion_factor, detection.pose_error_ratio);
}
void AprilRoboticsDetector::UndistortDetection(
apriltag_detection_t *det) const {
// 4 corners
constexpr size_t kRows = 4;
// 2d points
constexpr size_t kCols = 2;
cv::Mat distorted_points(kRows, kCols, CV_64F, det->p);
cv::Mat undistorted_points = cv::Mat::zeros(kRows, kCols, CV_64F);
// Undistort the april tag points
cv::undistortPoints(distorted_points, undistorted_points, intrinsics_,
dist_coeffs_, cv::noArray(), projection_matrix_);
// Copy the undistorted points into det
for (size_t i = 0; i < kRows; i++) {
for (size_t j = 0; j < kCols; j++) {
det->p[i][j] = undistorted_points.at<double>(i, j);
}
}
}
double AprilRoboticsDetector::ComputeDistortionFactor(
const std::vector<cv::Point2f> &orig_corners,
const std::vector<cv::Point2f> &corners) {
CHECK_EQ(orig_corners.size(), 4ul);
CHECK_EQ(corners.size(), 4ul);
double avg_distance = 0.0;
for (size_t i = 0; i < corners.size(); i++) {
avg_distance += cv::norm(orig_corners[i] - corners[i]);
}
avg_distance /= corners.size();
// Normalize avg_distance by dividing by the image diagonal,
// and then the maximum expected distortion
double distortion_factor =
avg_distance /
cv::norm(cv::Point2d(image_size_.width, image_size_.height));
return std::min(
distortion_factor / absl::GetFlag(FLAGS_max_expected_distortion), 1.0);
}
std::vector<cv::Point2f> AprilRoboticsDetector::MakeCornerVector(
const apriltag_detection_t *det) {
std::vector<cv::Point2f> corner_points;
corner_points.emplace_back(det->p[0][0], det->p[0][1]);
corner_points.emplace_back(det->p[1][0], det->p[1][1]);
corner_points.emplace_back(det->p[2][0], det->p[2][1]);
corner_points.emplace_back(det->p[3][0], det->p[3][1]);
return corner_points;
}
void AprilRoboticsDetector::DestroyPose(apriltag_pose_t *pose) const {
matd_destroy(pose->R);
matd_destroy(pose->t);
}
AprilRoboticsDetector::DetectionResult AprilRoboticsDetector::DetectTags(
cv::Mat image, aos::monotonic_clock::time_point eof) {
cv::Mat color_image;
cvtColor(image, color_image, cv::COLOR_GRAY2RGB);
const aos::monotonic_clock::time_point start_time =
aos::monotonic_clock::now();
image_u8_t im = {
.width = image.cols,
.height = image.rows,
.stride = image.cols,
.buf = image.data,
};
const uint32_t min_x = absl::GetFlag(FLAGS_pixel_border);
const uint32_t max_x = image.cols - absl::GetFlag(FLAGS_pixel_border);
const uint32_t min_y = absl::GetFlag(FLAGS_pixel_border);
const uint32_t max_y = image.rows - absl::GetFlag(FLAGS_pixel_border);
ftrace_.FormatMessage("Starting detect\n");
zarray_t *detections = apriltag_detector_detect(tag_detector_, &im);
ftrace_.FormatMessage("Done detecting\n");
std::vector<Detection> results;
auto builder = image_annotations_sender_.MakeBuilder();
std::vector<flatbuffers::Offset<foxglove::PointsAnnotation>> foxglove_corners;
for (int i = 0; i < zarray_size(detections); i++) {
apriltag_detection_t *det;
zarray_get(detections, i, &det);
if (det->decision_margin > absl::GetFlag(FLAGS_min_decision_margin)) {
if (det->p[0][0] < min_x || det->p[0][0] > max_x ||
det->p[1][0] < min_x || det->p[1][0] > max_x ||
det->p[2][0] < min_x || det->p[2][0] > max_x ||
det->p[3][0] < min_x || det->p[3][0] > max_x ||
det->p[0][1] < min_y || det->p[0][1] > max_y ||
det->p[1][1] < min_y || det->p[1][1] > max_y ||
det->p[2][1] < min_y || det->p[2][1] > max_y ||
det->p[3][1] < min_y || det->p[3][1] > max_y) {
VLOG(1) << "Rejecting detection because corner is outside pixel border";
// Send rejected corner points in red
std::vector<cv::Point2f> rejected_corner_points = MakeCornerVector(det);
foxglove_corners.push_back(frc971::vision::BuildPointsAnnotation(
builder.fbb(), eof, rejected_corner_points,
std::vector<double>{1.0, 0.0, 0.0, 0.5}));
continue;
}
VLOG(1) << "Found tag number " << det->id << " hamming: " << det->hamming
<< " margin: " << det->decision_margin;
// First create an apriltag_detection_info_t struct using your known
// parameters.
apriltag_detection_info_t info;
info.det = det;
info.tagsize = 0.1524;
info.fx = intrinsics_.at<double>(0, 0);
info.fy = intrinsics_.at<double>(1, 1);
info.cx = intrinsics_.at<double>(0, 2);
info.cy = intrinsics_.at<double>(1, 2);
// Send original corner points in green
std::vector<cv::Point2f> orig_corner_points = MakeCornerVector(det);
foxglove_corners.push_back(frc971::vision::BuildPointsAnnotation(
builder.fbb(), eof, orig_corner_points,
std::vector<double>{0.0, 1.0, 0.0, 0.5}));
UndistortDetection(det);
const aos::monotonic_clock::time_point before_pose_estimation =
aos::monotonic_clock::now();
apriltag_pose_t pose_1;
apriltag_pose_t pose_2;
double pose_error_1;
double pose_error_2;
estimate_tag_pose_orthogonal_iteration(
&info, &pose_error_1, &pose_1, &pose_error_2, &pose_2,
absl::GetFlag(FLAGS_pose_estimation_iterations));
const aos::monotonic_clock::time_point after_pose_estimation =
aos::monotonic_clock::now();
VLOG(1) << "Took "
<< chrono::duration<double>(after_pose_estimation -
before_pose_estimation)
.count()
<< " seconds for pose estimation";
VLOG(1) << "Pose err 1: " << pose_error_1;
VLOG(1) << "Pose err 2: " << pose_error_2;
// Send undistorted corner points in pink
std::vector<cv::Point2f> corner_points = MakeCornerVector(det);
foxglove_corners.push_back(frc971::vision::BuildPointsAnnotation(
builder.fbb(), eof, corner_points,
std::vector<double>{1.0, 0.75, 0.8, 1.0}));
double distortion_factor =
ComputeDistortionFactor(orig_corner_points, corner_points);
// We get two estimates for poses.
// Choose the one with the lower estimation error
bool use_pose_1 = (pose_error_1 < pose_error_2);
auto best_pose = (use_pose_1 ? pose_1 : pose_2);
auto secondary_pose = (use_pose_1 ? pose_2 : pose_1);
double best_pose_error = (use_pose_1 ? pose_error_1 : pose_error_2);
double secondary_pose_error = (use_pose_1 ? pose_error_2 : pose_error_1);
CHECK_NE(best_pose_error, std::numeric_limits<double>::infinity())
<< "Got no valid pose estimations, this should not be possible.";
double pose_error_ratio = best_pose_error / secondary_pose_error;
// Destroy the secondary pose if we got one
if (secondary_pose_error != std::numeric_limits<double>::infinity()) {
DestroyPose(&secondary_pose);
}
results.emplace_back(Detection{.det = *det,
.pose = best_pose,
.pose_error = best_pose_error,
.distortion_factor = distortion_factor,
.pose_error_ratio = pose_error_ratio});
if (absl::GetFlag(FLAGS_visualize)) {
// Draw raw (distorted) corner points in green
cv::line(color_image, orig_corner_points[0], orig_corner_points[1],
cv::Scalar(0, 255, 0), 2);
cv::line(color_image, orig_corner_points[1], orig_corner_points[2],
cv::Scalar(0, 255, 0), 2);
cv::line(color_image, orig_corner_points[2], orig_corner_points[3],
cv::Scalar(0, 255, 0), 2);
cv::line(color_image, orig_corner_points[3], orig_corner_points[0],
cv::Scalar(0, 255, 0), 2);
// Draw undistorted corner points in red
cv::line(color_image, corner_points[0], corner_points[1],
cv::Scalar(0, 0, 255), 2);
cv::line(color_image, corner_points[2], corner_points[1],
cv::Scalar(0, 0, 255), 2);
cv::line(color_image, corner_points[2], corner_points[3],
cv::Scalar(0, 0, 255), 2);
cv::line(color_image, corner_points[0], corner_points[3],
cv::Scalar(0, 0, 255), 2);
}
VLOG(1) << "Found tag number " << det->id << " hamming: " << det->hamming
<< " margin: " << det->decision_margin;
} else {
rejections_++;
}
}
if (absl::GetFlag(FLAGS_visualize)) {
// Display the result
// Rotate by 180 degrees to make it upright
if (flip_image_) {
cv::rotate(color_image, color_image, 1);
}
cv::imshow(absl::StrCat("AprilRoboticsDetector Image ", node_name_),
color_image);
}
const auto corners_offset = builder.fbb()->CreateVector(foxglove_corners);
foxglove::ImageAnnotations::Builder annotation_builder(*builder.fbb());
annotation_builder.add_points(corners_offset);
builder.CheckOk(builder.Send(annotation_builder.Finish()));
apriltag_detections_destroy(detections);
const aos::monotonic_clock::time_point end_time = aos::monotonic_clock::now();
if (absl::GetFlag(FLAGS_debug)) {
timeprofile_display(tag_detector_->tp);
}
VLOG(1) << "Took " << chrono::duration<double>(end_time - start_time).count()
<< " seconds to detect overall";
return {.detections = results, .rejections = rejections_};
}
} // namespace y2023::vision