| #include "frc971/wpilib/sensor_reader.h" |
| |
| #include <unistd.h> |
| |
| #include <cinttypes> |
| |
| #include "absl/flags/flag.h" |
| |
| #include "aos/init.h" |
| #include "aos/logging/logging.h" |
| #include "aos/realtime.h" |
| #include "aos/util/compiler_memory_barrier.h" |
| #include "frc971/wpilib/ahal/DigitalInput.h" |
| #include "frc971/wpilib/ahal/DriverStation.h" |
| #include "frc971/wpilib/fpga_time_conversion.h" |
| #include "frc971/wpilib/wpilib_interface.h" |
| #include "hal/PWM.h" |
| |
| ABSL_FLAG(int32_t, pwm_offset, 5050 / 2, |
| "Offset of reading the sensors from the start of the PWM cycle"); |
| |
| namespace frc971::wpilib { |
| |
| SensorReader::SensorReader(::aos::ShmEventLoop *event_loop) |
| : event_loop_(event_loop), |
| robot_state_sender_(event_loop_->MakeSender<::aos::RobotState>("/aos")), |
| my_pid_(getpid()) { |
| // Set some defaults. We don't tend to exceed these, so old robots should |
| // just work with them. |
| UpdateFastEncoderFilterHz(500000); |
| UpdateMediumEncoderFilterHz(100000); |
| ds_ = &::frc::DriverStation::GetInstance(); |
| |
| event_loop->SetRuntimeRealtimePriority(40); |
| // The timer interrupt fires on CPU1. Since nothing else is pinned, it will |
| // be cheapest to pin this there so it transitions directly and doesn't |
| // need to ever migrate. |
| event_loop->SetRuntimeAffinity(aos::MakeCpusetFromCpus({1})); |
| |
| // Fill in the no pwm trigger defaults. |
| timer_handler_ = event_loop_->AddTimer([this]() { Loop(); }); |
| timer_handler_->set_name("SensorReader Loop"); |
| |
| event_loop->set_name("SensorReader"); |
| event_loop->OnRun([this]() { DoStart(); }); |
| } |
| |
| void SensorReader::UpdateFastEncoderFilterHz(int hz) { |
| fast_encoder_filter_.SetPeriodHz(::std::max(hz, 100000)); |
| } |
| |
| void SensorReader::UpdateMediumEncoderFilterHz(int hz) { |
| medium_encoder_filter_.SetPeriodHz(::std::max(hz, 50000)); |
| } |
| |
| void SensorReader::set_drivetrain_left_encoder( |
| ::std::unique_ptr<frc::Encoder> encoder) { |
| fast_encoder_filter_.Add(encoder.get()); |
| drivetrain_left_encoder_ = ::std::move(encoder); |
| drivetrain_left_encoder_->SetMaxPeriod(0.005); |
| } |
| |
| void SensorReader::set_drivetrain_right_encoder( |
| ::std::unique_ptr<frc::Encoder> encoder) { |
| fast_encoder_filter_.Add(encoder.get()); |
| drivetrain_right_encoder_ = ::std::move(encoder); |
| drivetrain_right_encoder_->SetMaxPeriod(0.005); |
| } |
| |
| monotonic_clock::time_point SensorReader::GetPWMStartTime() { |
| int32_t status = 0; |
| const auto new_fpga_time = |
| hal::fpga_clock::duration(HAL_GetPWMCycleStartTime(&status)); |
| |
| if (!ds_->IsSysActive()) { |
| return monotonic_clock::min_time; |
| } |
| |
| const auto fpga_offset = CalculateFpgaOffset(); |
| // If we failed to sample the offset, just ignore this reading. |
| if (!fpga_offset) { |
| return monotonic_clock::min_time; |
| } |
| |
| return monotonic_clock::epoch() + (new_fpga_time + *fpga_offset); |
| } |
| |
| void SensorReader::SendDrivetrainPosition( |
| aos::Sender<control_loops::drivetrain::PositionStatic>::StaticBuilder |
| builder, |
| std::function<double(double input)> velocity_translate, |
| std::function<double(double input)> encoder_to_meters, bool left_inverted, |
| bool right_inverted) { |
| builder->set_left_encoder( |
| (left_inverted ? -1.0 : 1.0) * |
| encoder_to_meters(drivetrain_left_encoder_->GetRaw())); |
| builder->set_left_speed( |
| (left_inverted ? -1.0 : 1.0) * |
| velocity_translate(drivetrain_left_encoder_->GetPeriod())); |
| |
| builder->set_right_encoder( |
| (right_inverted ? -1.0 : 1.0) * |
| encoder_to_meters(drivetrain_right_encoder_->GetRaw())); |
| builder->set_right_speed( |
| (right_inverted ? -1.0 : 1.0) * |
| velocity_translate(drivetrain_right_encoder_->GetPeriod())); |
| |
| builder.CheckOk(builder.Send()); |
| } |
| |
| void SensorReader::DoStart() { |
| Start(); |
| if (dma_synchronizer_) { |
| dma_synchronizer_->Start(); |
| } |
| |
| period_ = |
| pwm_trigger_ ? chrono::microseconds(5050) : chrono::microseconds(5000); |
| if (pwm_trigger_) { |
| AOS_LOG(INFO, "Using PWM trigger and a 5.05 ms period\n"); |
| } else { |
| AOS_LOG(INFO, "Defaulting to open loop pwm synchronization\n"); |
| } |
| |
| if (pwm_trigger_) { |
| // Now that we are configured, actually fill in the defaults. |
| timer_handler_->Schedule( |
| event_loop_->monotonic_now() + |
| (pwm_trigger_ ? chrono::milliseconds(3) : chrono::milliseconds(4)), |
| period_); |
| } else { |
| // Synchronous CAN wakes up at round multiples of the clock. Use a phased |
| // loop to calculate it. |
| aos::time::PhasedLoop phased_loop(period_, monotonic_clock::now()); |
| timer_handler_->Schedule(phased_loop.sleep_time(), period_); |
| } |
| |
| last_monotonic_now_ = monotonic_clock::now(); |
| } |
| |
| void SensorReader::Loop() { |
| const monotonic_clock::time_point monotonic_now = |
| event_loop_->monotonic_now(); |
| |
| { |
| auto builder = robot_state_sender_.MakeBuilder(); |
| (void)builder.Send(::frc971::wpilib::PopulateRobotState(&builder, my_pid_)); |
| } |
| RunIteration(); |
| if (dma_synchronizer_) { |
| dma_synchronizer_->RunIteration(); |
| RunDmaIteration(); |
| } |
| |
| if (pwm_trigger_) { |
| // TODO(austin): Put this in a status message. |
| VLOG(1) << "PWM wakeup delta: " |
| << (monotonic_now - last_monotonic_now_).count(); |
| last_monotonic_now_ = monotonic_now; |
| |
| monotonic_clock::time_point last_tick_timepoint = GetPWMStartTime(); |
| VLOG(1) << "Start time " << last_tick_timepoint << " period " |
| << period_.count(); |
| if (last_tick_timepoint == monotonic_clock::min_time) { |
| return; |
| } |
| |
| last_tick_timepoint += |
| ((monotonic_now - |
| chrono::microseconds(absl::GetFlag(FLAGS_pwm_offset)) - |
| last_tick_timepoint) / |
| period_) * |
| period_ + |
| chrono::microseconds(absl::GetFlag(FLAGS_pwm_offset)); |
| VLOG(1) << "Now " << monotonic_now << " tick " << last_tick_timepoint; |
| // If it's over 1/2 of a period back in time, that's wrong. Move it |
| // forwards to now. |
| if (last_tick_timepoint - monotonic_now < -period_ / 2) { |
| last_tick_timepoint += period_; |
| } |
| |
| // We should be sampling our sensors to kick off the control cycle 50 uS |
| // after the falling edge. This gives us a little bit of buffer for |
| // errors in waking up. The PWM cycle starts at the falling edge of the |
| // PWM pulse. |
| const auto next_time = last_tick_timepoint + period_; |
| |
| timer_handler_->Schedule(next_time, period_); |
| } |
| } |
| |
| } // namespace frc971::wpilib |