| #ifndef FRC971_VISION_GEOMETRY_H_ |
| #define FRC971_VISION_GEOMETRY_H_ |
| |
| #include <optional> |
| |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| #include "opencv2/core/types.hpp" |
| |
| #include "aos/util/math.h" |
| |
| namespace frc971::vision { |
| |
| // Linear equation in the form y = mx + b |
| struct SlopeInterceptLine { |
| double m, b; |
| |
| inline SlopeInterceptLine(cv::Point2d p, cv::Point2d q) { |
| if (p.x == q.x) { |
| CHECK_EQ(p.y, q.y) << "Can't fit line to infinite slope"; |
| |
| // If two identical points were passed in, give the slope 0, |
| // with it passing the point. |
| m = 0.0; |
| } else { |
| m = (p.y - q.y) / (p.x - q.x); |
| } |
| // y = mx + b -> b = y - mx |
| b = p.y - (m * p.x); |
| } |
| |
| inline double operator()(double x) const { return (m * x) + b; } |
| }; |
| |
| // Linear equation in the form ax + by = c |
| struct StdFormLine { |
| public: |
| double a, b, c; |
| |
| inline std::optional<cv::Point2d> Intersection(const StdFormLine &l) const { |
| // Use Cramer's rule to solve for the intersection |
| const double denominator = Determinant(a, b, l.a, l.b); |
| const double numerator_x = Determinant(c, b, l.c, l.b); |
| const double numerator_y = Determinant(a, c, l.a, l.c); |
| |
| std::optional<cv::Point2d> intersection = std::nullopt; |
| // Return nullopt if the denominator is 0, meaning the same slopes |
| if (denominator != 0) { |
| intersection = |
| cv::Point2d(numerator_x / denominator, numerator_y / denominator); |
| } |
| |
| return intersection; |
| } |
| |
| private: // Determinant of [[a, b], [c, d]] |
| static inline double Determinant(double a, double b, double c, double d) { |
| return (a * d) - (b * c); |
| } |
| }; |
| |
| struct Circle { |
| public: |
| cv::Point2d center; |
| double radius; |
| |
| static inline std::optional<Circle> Fit(std::vector<cv::Point2d> points) { |
| CHECK_EQ(points.size(), 3ul); |
| // For the 3 points, we have 3 equations in the form |
| // (x - h)^2 + (y - k)^2 = r^2 |
| // Manipulate them to solve for the center and radius |
| // (x1 - h)^2 + (y1 - k)^2 = r^2 -> |
| // x1^2 + h^2 - 2x1h + y1^2 + k^2 - 2y1k = r^2 |
| // Also, (x2 - h)^2 + (y2 - k)^2 = r^2 |
| // Subtracting these two, we get |
| // x1^2 - x2^2 - 2h(x1 - x2) + y1^2 - y2^2 - 2k(y1 - y2) = 0 -> |
| // h(x1 - x2) + k(y1 - y2) = (-x1^2 + x2^2 - y1^2 + y2^2) / -2 |
| // Doing the same with equations 1 and 3, we get the second linear equation |
| // h(x1 - x3) + k(y1 - y3) = (-x1^2 + x3^2 - y1^2 + y3^2) / -2 |
| // Now, we can solve for their intersection and find the center |
| const auto l = |
| StdFormLine{points[0].x - points[1].x, points[0].y - points[1].y, |
| (-std::pow(points[0].x, 2) + std::pow(points[1].x, 2) - |
| std::pow(points[0].y, 2) + std::pow(points[1].y, 2)) / |
| -2.0}; |
| const auto m = |
| StdFormLine{points[0].x - points[2].x, points[0].y - points[2].y, |
| (-std::pow(points[0].x, 2) + std::pow(points[2].x, 2) - |
| std::pow(points[0].y, 2) + std::pow(points[2].y, 2)) / |
| -2.0}; |
| const auto center = l.Intersection(m); |
| |
| std::optional<Circle> circle = std::nullopt; |
| if (center) { |
| // Now find the radius |
| const double radius = cv::norm(points[0] - *center); |
| circle = Circle{*center, radius}; |
| } |
| return circle; |
| } |
| |
| inline double DistanceTo(cv::Point2d p) const { |
| const auto p_prime = TranslateToOrigin(p); |
| // Now, the distance is simply the difference between distance from the |
| // origin to p' and the radius. |
| return std::abs(cv::norm(p_prime) - radius); |
| } |
| |
| inline double AngleOf(cv::Point2d p) const { |
| auto p_prime = TranslateToOrigin(p); |
| // Flip the y because y values go downwards. |
| p_prime.y *= -1; |
| return std::atan2(p_prime.y, p_prime.x); |
| } |
| |
| // Expects all angles to be from 0 to 2pi |
| // TODO(milind): handle wrapping |
| static inline bool AngleInRange(double theta, double theta_min, |
| double theta_max) { |
| return ( |
| (theta >= theta_min && theta <= theta_max) || |
| (theta_min > theta_max && (theta >= theta_min || theta <= theta_max))); |
| } |
| |
| inline bool InAngleRange(cv::Point2d p, double theta_min, |
| double theta_max) const { |
| return AngleInRange(AngleOf(p), theta_min, theta_max); |
| } |
| |
| private: |
| // Translate the point on the circle |
| // as if the circle's center is the origin (0,0) |
| inline cv::Point2d TranslateToOrigin(cv::Point2d p) const { |
| return cv::Point2d(p.x - center.x, p.y - center.y); |
| } |
| }; |
| |
| } // namespace frc971::vision |
| |
| #endif // FRC971_VISION_GEOMETRY_H_ |