blob: f1495bcbd2b809dc007bab9885708facdf1ab719 [file] [log] [blame]
#ifndef FRC971_VISION_GEOMETRY_H_
#define FRC971_VISION_GEOMETRY_H_
#include <optional>
#include "absl/log/check.h"
#include "absl/log/log.h"
#include "opencv2/core/types.hpp"
#include "aos/util/math.h"
namespace frc971::vision {
// Linear equation in the form y = mx + b
struct SlopeInterceptLine {
double m, b;
inline SlopeInterceptLine(cv::Point2d p, cv::Point2d q) {
if (p.x == q.x) {
CHECK_EQ(p.y, q.y) << "Can't fit line to infinite slope";
// If two identical points were passed in, give the slope 0,
// with it passing the point.
m = 0.0;
} else {
m = (p.y - q.y) / (p.x - q.x);
}
// y = mx + b -> b = y - mx
b = p.y - (m * p.x);
}
inline double operator()(double x) const { return (m * x) + b; }
};
// Linear equation in the form ax + by = c
struct StdFormLine {
public:
double a, b, c;
inline std::optional<cv::Point2d> Intersection(const StdFormLine &l) const {
// Use Cramer's rule to solve for the intersection
const double denominator = Determinant(a, b, l.a, l.b);
const double numerator_x = Determinant(c, b, l.c, l.b);
const double numerator_y = Determinant(a, c, l.a, l.c);
std::optional<cv::Point2d> intersection = std::nullopt;
// Return nullopt if the denominator is 0, meaning the same slopes
if (denominator != 0) {
intersection =
cv::Point2d(numerator_x / denominator, numerator_y / denominator);
}
return intersection;
}
private: // Determinant of [[a, b], [c, d]]
static inline double Determinant(double a, double b, double c, double d) {
return (a * d) - (b * c);
}
};
struct Circle {
public:
cv::Point2d center;
double radius;
static inline std::optional<Circle> Fit(std::vector<cv::Point2d> points) {
CHECK_EQ(points.size(), 3ul);
// For the 3 points, we have 3 equations in the form
// (x - h)^2 + (y - k)^2 = r^2
// Manipulate them to solve for the center and radius
// (x1 - h)^2 + (y1 - k)^2 = r^2 ->
// x1^2 + h^2 - 2x1h + y1^2 + k^2 - 2y1k = r^2
// Also, (x2 - h)^2 + (y2 - k)^2 = r^2
// Subtracting these two, we get
// x1^2 - x2^2 - 2h(x1 - x2) + y1^2 - y2^2 - 2k(y1 - y2) = 0 ->
// h(x1 - x2) + k(y1 - y2) = (-x1^2 + x2^2 - y1^2 + y2^2) / -2
// Doing the same with equations 1 and 3, we get the second linear equation
// h(x1 - x3) + k(y1 - y3) = (-x1^2 + x3^2 - y1^2 + y3^2) / -2
// Now, we can solve for their intersection and find the center
const auto l =
StdFormLine{points[0].x - points[1].x, points[0].y - points[1].y,
(-std::pow(points[0].x, 2) + std::pow(points[1].x, 2) -
std::pow(points[0].y, 2) + std::pow(points[1].y, 2)) /
-2.0};
const auto m =
StdFormLine{points[0].x - points[2].x, points[0].y - points[2].y,
(-std::pow(points[0].x, 2) + std::pow(points[2].x, 2) -
std::pow(points[0].y, 2) + std::pow(points[2].y, 2)) /
-2.0};
const auto center = l.Intersection(m);
std::optional<Circle> circle = std::nullopt;
if (center) {
// Now find the radius
const double radius = cv::norm(points[0] - *center);
circle = Circle{*center, radius};
}
return circle;
}
inline double DistanceTo(cv::Point2d p) const {
const auto p_prime = TranslateToOrigin(p);
// Now, the distance is simply the difference between distance from the
// origin to p' and the radius.
return std::abs(cv::norm(p_prime) - radius);
}
inline double AngleOf(cv::Point2d p) const {
auto p_prime = TranslateToOrigin(p);
// Flip the y because y values go downwards.
p_prime.y *= -1;
return std::atan2(p_prime.y, p_prime.x);
}
// Expects all angles to be from 0 to 2pi
// TODO(milind): handle wrapping
static inline bool AngleInRange(double theta, double theta_min,
double theta_max) {
return (
(theta >= theta_min && theta <= theta_max) ||
(theta_min > theta_max && (theta >= theta_min || theta <= theta_max)));
}
inline bool InAngleRange(cv::Point2d p, double theta_min,
double theta_max) const {
return AngleInRange(AngleOf(p), theta_min, theta_max);
}
private:
// Translate the point on the circle
// as if the circle's center is the origin (0,0)
inline cv::Point2d TranslateToOrigin(cv::Point2d p) const {
return cv::Point2d(p.x - center.x, p.y - center.y);
}
};
} // namespace frc971::vision
#endif // FRC971_VISION_GEOMETRY_H_