| #include <chrono> |
| #include <memory> |
| |
| #include "frc971/constants.h" |
| #include "frc971/control_loops/capped_test_plant.h" |
| #include "frc971/control_loops/control_loop_test.h" |
| #include "frc971/control_loops/position_sensor_sim.h" |
| |
| namespace frc971::control_loops { |
| |
| template <typename SubsystemStatus, typename SubsystemState, |
| typename SubsystemConstants> |
| |
| // Class used for simulating a single degree of freedom subsystem in test. |
| // Simulates the state of the subsystem as a voltage is applied |
| class SubsystemSimulator { |
| public: |
| SubsystemSimulator(CappedTestPlant *plant, PositionSensorSimulator encoder, |
| const SubsystemConstants subsystem_constants, |
| const frc971::constants::Range range, |
| double encoder_offset, const std::chrono::nanoseconds dt) |
| : plant_(plant), |
| encoder_(encoder), |
| subsystem_constants_(subsystem_constants), |
| range_(range), |
| encoder_offset_(encoder_offset), |
| dt_(dt) {} |
| |
| void InitializePosition(double start_pos) { |
| plant_->mutable_X(0, 0) = start_pos; |
| plant_->mutable_X(1, 0) = 0.0; |
| |
| encoder_.Initialize(start_pos, 0.0, encoder_offset_); |
| } |
| |
| // Simulates the superstructure for a single timestep. |
| void Simulate(double voltage, const SubsystemStatus *status) { |
| double last_velocity = plant_->X(1, 0); |
| |
| const double voltage_check = |
| (static_cast<SubsystemState>(status->state()) == |
| SubsystemState::RUNNING) |
| ? subsystem_constants_.subsystem_params.operating_voltage |
| : subsystem_constants_.subsystem_params.zeroing_voltage; |
| |
| EXPECT_NEAR(voltage, 0.0, voltage_check); |
| |
| ::Eigen::Matrix<double, 1, 1> U; |
| U << voltage + plant_->voltage_offset(); |
| plant_->Update(U); |
| |
| const double position = plant_->Y(0, 0); |
| |
| encoder_.MoveTo(position); |
| |
| EXPECT_GE(position, range_.lower_hard); |
| EXPECT_LE(position, range_.upper_hard); |
| |
| const double loop_time = ::aos::time::DurationInSeconds(dt_); |
| |
| const double velocity = plant_->X(1, 0); |
| const double acceleration = (velocity - last_velocity) / loop_time; |
| |
| EXPECT_GE(peak_acceleration_, acceleration); |
| EXPECT_LE(-peak_acceleration_, acceleration); |
| EXPECT_GE(peak_velocity_, velocity); |
| EXPECT_LE(-peak_velocity_, velocity); |
| } |
| |
| void set_peak_acceleration(double value) { peak_acceleration_ = value; } |
| void set_peak_velocity(double value) { peak_velocity_ = value; } |
| |
| void set_controller_index(size_t index) { plant_->set_index(index); } |
| |
| double voltage_offset() const { return plant_->voltage_offset(); } |
| void set_voltage_offset(double voltage_offset) { |
| plant_->set_voltage_offset(voltage_offset); |
| } |
| |
| PositionSensorSimulator *encoder() { return &encoder_; } |
| |
| double position() const { return plant_->X(0, 0); } |
| double velocity() const { return plant_->X(1, 0); } |
| |
| private: |
| std::unique_ptr<CappedTestPlant> plant_; |
| PositionSensorSimulator encoder_; |
| const SubsystemConstants subsystem_constants_; |
| const frc971::constants::Range range_; |
| |
| double encoder_offset_ = 0.0; |
| |
| double peak_velocity_ = std::numeric_limits<double>::infinity(); |
| double peak_acceleration_ = std::numeric_limits<double>::infinity(); |
| |
| const std::chrono::nanoseconds dt_; |
| }; |
| |
| } // namespace frc971::control_loops |