blob: f21ed03ed7e78a5c4cb503469c6f07df3e5efca3 [file] [log] [blame]
#!/usr/bin/python
import control_loop
import numpy
import sys
from matplotlib import pylab
class Wrist(control_loop.ControlLoop):
def __init__(self, name="RawWrist"):
super(Wrist, self).__init__(name)
# Stall Torque in N m
self.stall_torque = 1.4
# Stall Current in Amps
self.stall_current = 86
# Free Speed in RPM
self.free_speed = 6200.0
# Free Current in Amps
self.free_current = 1.5
# Moment of inertia of the wrist in kg m^2
# TODO(aschuh): Measure this in reality. It doesn't seem high enough.
# James measured 0.51, but that can't be right given what I am seeing.
self.J = 2.0
# Resistance of the motor
self.R = 12.0 / self.stall_current + 0.024 + .003
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(13.5 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
self.G = 1.0 / ((84.0 / 20.0) * (50.0 / 14.0) * (40.0 / 14.0) * (40.0 / 12.0))
# Control loop time step
self.dt = 0.01
# State feedback matrices
self.A_continuous = numpy.matrix(
[[0, 1],
[0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
self.B_continuous = numpy.matrix(
[[0],
[self.Kt / (self.J * self.G * self.R)]])
self.C = numpy.matrix([[1, 0]])
self.D = numpy.matrix([[0]])
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
self.PlaceControllerPoles([0.85, 0.45])
self.rpl = .05
self.ipl = 0.008
self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl])
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
self.InitializeState()
class WristDeltaU(Wrist):
def __init__(self, name="Wrist"):
super(WristDeltaU, self).__init__(name)
A_unaugmented = self.A
B_unaugmented = self.B
self.A = numpy.matrix([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 1.0]])
self.A[0:2, 0:2] = A_unaugmented
self.A[0:2, 2] = B_unaugmented
self.B = numpy.matrix([[0.0],
[0.0],
[1.0]])
self.C = numpy.matrix([[1.0, 0.0, 0.0]])
self.D = numpy.matrix([[0.0]])
self.PlaceControllerPoles([0.60, 0.37, 0.80])
print "K"
print self.K
print "Placed controller poles are"
print numpy.linalg.eig(self.A - self.B * self.K)[0]
self.rpl = .05
self.ipl = 0.008
self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl, 0.15])
print "Placed observer poles are"
print numpy.linalg.eig(self.A - self.L * self.C)[0]
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
self.InitializeState()
def ClipDeltaU(wrist, delta_u):
old_u = numpy.matrix([[wrist.X[2, 0]]])
new_u = numpy.clip(old_u + delta_u, wrist.U_min, wrist.U_max)
return new_u - old_u
def main(argv):
# Simulate the response of the system to a step input.
wrist = WristDeltaU()
simulated_x = []
for _ in xrange(100):
wrist.Update(numpy.matrix([[12.0]]))
simulated_x.append(wrist.X[0, 0])
pylab.plot(range(100), simulated_x)
pylab.show()
# Simulate the closed loop response of the system to a step input.
wrist = WristDeltaU()
close_loop_x = []
close_loop_u = []
R = numpy.matrix([[1.0], [0.0], [0.0]])
wrist.X[2, 0] = -5
for _ in xrange(100):
U = numpy.clip(wrist.K * (R - wrist.X_hat), wrist.U_min, wrist.U_max)
U = ClipDeltaU(wrist, U)
wrist.UpdateObserver(U)
wrist.Update(U)
close_loop_x.append(wrist.X[0, 0] * 10)
close_loop_u.append(wrist.X[2, 0])
pylab.plot(range(100), close_loop_x)
pylab.plot(range(100), close_loop_u)
pylab.show()
# Write the generated constants out to a file.
if len(argv) != 5:
print "Expected .h file name and .cc file name for"
print "both the plant and unaugmented plant"
else:
unaug_wrist = Wrist("RawWrist")
unaug_loop_writer = control_loop.ControlLoopWriter("RawWrist",
[unaug_wrist])
if argv[3][-3:] == '.cc':
unaug_loop_writer.Write(argv[4], argv[3])
else:
unaug_loop_writer.Write(argv[3], argv[4])
loop_writer = control_loop.ControlLoopWriter("Wrist", [wrist])
if argv[1][-3:] == '.cc':
loop_writer.Write(argv[2], argv[1])
else:
loop_writer.Write(argv[1], argv[2])
if __name__ == '__main__':
sys.exit(main(sys.argv))