blob: 3c87e861e218b3fc57a4a832c92e4dab52556cc3 [file] [log] [blame]
#!/usr/bin/python
import control_loop
import numpy
import sys
from matplotlib import pylab
class AngleAdjust(control_loop.ControlLoop):
def __init__(self, name="AngleAdjustRaw"):
super(AngleAdjust, self).__init__(name)
# Stall Torque in N m
self.stall_torque = .428
# Stall Current in Amps
self.stall_current = 63.8
# Free Speed in RPM
self.free_speed = 14900.0
# Free Current in Amps
self.free_current = 1.2
# Moment of inertia of the angle adjust about the shooter's pivot in kg m^2
self.J = 9.4
# Resistance of the motor
self.R = 12.0 / self.stall_current
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio of the gearbox multiplied by the ratio of the radii of
# the output and the angle adjust curve, which is essentially another gear.
self.G = (1.0 / 50.0) * (0.01905 / 0.41964)
# Control loop time step
self.dt = 0.01
# State feedback matrices
self.A_continuous = numpy.matrix(
[[0, 1],
[0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
self.B_continuous = numpy.matrix(
[[0],
[self.Kt / (self.J * self.G * self.R)]])
self.C = numpy.matrix([[1, 0]])
self.D = numpy.matrix([[0]])
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
self.PlaceControllerPoles([.45, .8])
print "Unaugmented controller poles at"
print self.K
self.rpl = .05
self.ipl = 0.008
self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl])
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
self.InitializeState()
class AngleAdjustDeltaU(AngleAdjust):
def __init__(self, name="AngleAdjust"):
super(AngleAdjustDeltaU, self).__init__(name)
A_unaugmented = self.A
B_unaugmented = self.B
self.A = numpy.matrix([[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 1.0]])
self.A[0:2, 0:2] = A_unaugmented
self.A[0:2, 2] = B_unaugmented
self.B = numpy.matrix([[0.0],
[0.0],
[1.0]])
self.C = numpy.matrix([[1.0, 0.0, 0.0]])
self.D = numpy.matrix([[0.0]])
self.PlaceControllerPoles([0.60, 0.35, 0.80])
print "K"
print self.K
print "Placed controller poles are"
print numpy.linalg.eig(self.A - self.B * self.K)[0]
self.rpl = .05
self.ipl = 0.008
self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl, 0.15])
print "Placed observer poles are"
print numpy.linalg.eig(self.A - self.L * self.C)[0]
self.U_max = numpy.matrix([[12.0]])
self.U_min = numpy.matrix([[-12.0]])
self.InitializeState()
def main(argv):
# Simulate the response of the system to a step input.
angle_adjust_data = numpy.genfromtxt(
'angle_adjust/angle_adjust_data.csv', delimiter=',')
angle_adjust = AngleAdjust()
simulated_x = []
real_x = []
initial_x = angle_adjust_data[0, 2]
for i in xrange(angle_adjust_data.shape[0]):
angle_adjust.Update(numpy.matrix([[angle_adjust_data[i, 1] - 0.7]]))
simulated_x.append(angle_adjust.X[0, 0])
x_offset = angle_adjust_data[i, 2] - initial_x
real_x.append(x_offset)
sim_delay = 2
pylab.plot(range(sim_delay, angle_adjust_data.shape[0] + sim_delay),
simulated_x, label='Simulation')
pylab.plot(range(angle_adjust_data.shape[0]), real_x, label='Reality')
pylab.legend()
pylab.show()
# Simulate the closed loop response of the system to a step input.
angle_adjust = AngleAdjustDeltaU()
close_loop_x = []
R = numpy.matrix([[1.0], [0.0], [0.0]])
for _ in xrange(100):
U = numpy.clip(angle_adjust.K * (R - angle_adjust.X_hat), angle_adjust.U_min, angle_adjust.U_max)
angle_adjust.UpdateObserver(U)
angle_adjust.Update(U)
close_loop_x.append(angle_adjust.X[0, 0])
pylab.plot(range(100), close_loop_x)
pylab.show()
# Write the generated constants out to a file.
if len(argv) != 5:
print "Expected .cc file name and .h file name"
else:
loop_writer = control_loop.ControlLoopWriter("RawAngleAdjust",
[AngleAdjust()])
if argv[3][-3:] == '.cc':
loop_writer.Write(argv[4], argv[3])
else:
loop_writer.Write(argv[3], argv[4])
loop_writer = control_loop.ControlLoopWriter("AngleAdjust", [angle_adjust])
if argv[1][-3:] == '.cc':
loop_writer.Write(argv[2], argv[1])
else:
loop_writer.Write(argv[1], argv[2])
if __name__ == '__main__':
sys.exit(main(sys.argv))