| Support vector machine (SVM) |
| ============================ |
| |
| *Support vector machine* seeks an affine function that approximately classifies the two sets of points. |
| The problem can be stated as |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} x^T x + \gamma \sum_{i=1}^{m} \max(0, b_i a_i^T x + 1), |
| \end{array} |
| |
| where :math:`b_i \in \{ -1, +1 \}` is a set label, and :math:`a_i` is a vector of features for the :math:`i`-th point. |
| The problem has the following equivalent form |
| |
| .. math:: |
| \begin{array}{ll} |
| \mbox{minimize} & \frac{1}{2} x^T x + \gamma \boldsymbol{1}^T t \\ |
| \mbox{subject to} & t \ge {\rm diag}(b) Ax + 1 \\ |
| & t \ge 0, |
| \end{array} |
| |
| where :math:`{\rm diag}(b)` denotes the diagonal matrix with elements of :math:`b` on its diagonal. |
| |
| |
| |
| Python |
| ------ |
| |
| .. code:: python |
| |
| import osqp |
| import numpy as np |
| import scipy as sp |
| from scipy import sparse |
| |
| # Generate problem data |
| sp.random.seed(1) |
| n = 10 |
| m = 1000 |
| N = int(m / 2) |
| gamma = 1.0 |
| b = np.hstack([np.ones(N), -np.ones(N)]) |
| A_upp = sparse.random(N, n, density=0.5) |
| A_low = sparse.random(N, n, density=0.5) |
| Ad = sparse.vstack([ |
| A_upp / np.sqrt(n) + (A_upp != 0.).astype(float) / n, |
| A_low / np.sqrt(n) - (A_low != 0.).astype(float) / n |
| ], format='csc') |
| |
| # OSQP data |
| Im = sparse.eye(m) |
| P = sparse.block_diag([sparse.eye(n), sparse.csc_matrix((m, m))], format='csc') |
| q = np.hstack([np.zeros(n), gamma*np.ones(m)]) |
| A = sparse.vstack([ |
| sparse.hstack([sparse.diags(b).dot(Ad), -Im]), |
| sparse.hstack([sparse.csc_matrix((m, n)), Im]) |
| ], format='csc') |
| l = np.hstack([-np.inf*np.ones(m), np.zeros(m)]) |
| u = np.hstack([-np.ones(m), np.inf*np.ones(m)]) |
| |
| # Create an OSQP object |
| prob = osqp.OSQP() |
| |
| # Setup workspace |
| prob.setup(P, q, A, l, u) |
| |
| # Solve problem |
| res = prob.solve() |
| |
| |
| Matlab |
| ------ |
| |
| .. code:: matlab |
| |
| % Generate problem data |
| rng(1) |
| n = 10; |
| m = 1000; |
| N = ceil(m/2); |
| gamma = 1; |
| A_upp = sprandn(N, n, 0.5); |
| A_low = sprandn(N, n, 0.5); |
| Ad = [A_upp / sqrt(n) + (A_upp ~= 0) / n; |
| A_low / sqrt(n) - (A_low ~= 0) / n]; |
| b = [ones(N, 1); -ones(N,1)]; |
| |
| % OSQP data |
| P = blkdiag(speye(n), sparse(m, m)); |
| q = [zeros(n,1); gamma*ones(m,1)]; |
| A = [diag(b)*Ad, -speye(m); |
| sparse(m, n), speye(m)]; |
| l = [-inf*ones(m, 1); zeros(m, 1)]; |
| u = [-ones(m, 1); inf*ones(m, 1)]; |
| |
| % Create an OSQP object |
| prob = osqp; |
| |
| % Setup workspace |
| prob.setup(P, q, A, l, u); |
| |
| % Solve problem |
| res = prob.solve(); |
| |
| |
| |
| CVXPY |
| ----- |
| |
| .. code:: python |
| |
| from cvxpy import * |
| import numpy as np |
| import scipy as sp |
| from scipy import sparse |
| |
| # Generate problem data |
| sp.random.seed(1) |
| n = 10 |
| m = 1000 |
| N = int(m / 2) |
| gamma = 1.0 |
| b = np.hstack([np.ones(N), -np.ones(N)]) |
| A_upp = sparse.random(N, n, density=0.5) |
| A_low = sparse.random(N, n, density=0.5) |
| A = sparse.vstack([ |
| A_upp / np.sqrt(n) + (A_upp != 0.).astype(float) / n, |
| A_low / np.sqrt(n) - (A_low != 0.).astype(float) / n |
| ], format='csc') |
| |
| # Define problem |
| x = Variable(n) |
| objective = 0.5*sum_squares(x) + gamma*sum(pos(diag(b)*A*x + 1)) |
| |
| # Solve with OSQP |
| Problem(Minimize(objective)).solve(solver=OSQP) |
| |
| |
| |
| |
| YALMIP |
| ------ |
| |
| .. code:: matlab |
| |
| % Generate problem data |
| rng(1) |
| n = 10; |
| m = 1000; |
| N = ceil(m/2); |
| gamma = 1; |
| A_upp = sprandn(N, n, 0.5); |
| A_low = sprandn(N, n, 0.5); |
| A = [A_upp / sqrt(n) + (A_upp ~= 0) / n; |
| A_low / sqrt(n) - (A_low ~= 0) / n]; |
| b = [ones(N, 1); -ones(N,1)]; |
| |
| % Define problem |
| x = sdpvar(n, 1); |
| objective = 0.5*norm(x)^2 + gamma*sum(max(diag(b)*A*x + 1, 0)); |
| |
| % Solve with OSQP |
| options = sdpsettings('solver','osqp'); |
| optimize([],objective,options); |
| |