blob: df6ad16506f1d4c85f59f2080fcdb1123ea2be43 [file] [log] [blame]
#ifndef AOS_UTIL_BITPACKING_H_
#define AOS_UTIL_BITPACKING_H_
#include <assert.h>
#include <type_traits>
#include "third_party/GSL/include/gsl/gsl"
namespace aos {
template <typename Integer>
typename std::enable_if<std::is_unsigned<Integer>::value, Integer>::type
MaskOnes(size_t bits) {
// Get these edge cases out of the way first, so we can subtract 1 from bits
// safely later without getting a negative number.
if (bits == 0) {
return 0;
}
if (bits == 1) {
return 1;
}
static constexpr Integer kOne = 1;
// Note that we shift at most by bits - 1. bits == sizeof(Integer) * 8 is
// valid, and shifting by the width of a type is undefined behavior, so we
// need to get a bit fancy to make it all work. Just ORing high_bit in
// explicitly at the end makes it work.
const Integer high_bit = kOne << (bits - 1);
return (high_bit - kOne) | high_bit;
}
template <typename Integer, size_t bits, size_t offset>
typename std::enable_if<std::is_unsigned<Integer>::value &&
sizeof(Integer) * 8 >= bits>::type
PackBits(const Integer value, const gsl::span<char> destination) {
assert(static_cast<size_t>(destination.size()) * 8u >= bits + offset);
size_t bits_completed = 0;
while (bits_completed < bits) {
// Which logical bit (through all the bytes) we're writing at.
const size_t output_bit = offset + bits_completed;
// The lowest-numbered bit in the current byte we're writing to.
const size_t output_min_bit = output_bit % 8;
// The number of bits we're writing in this byte.
const size_t new_bits = std::min(8 - output_min_bit, bits - bits_completed);
// The highest-numbered bit in the current byte we're writing to.
const size_t output_max_bit = output_min_bit + new_bits;
// The new bits to set in the this byte.
const uint8_t new_byte_part =
(value >> bits_completed) & MaskOnes<Integer>(new_bits);
// A mask of bits to keep from the current value of this byte. Start with
// just the low ones.
uint8_t existing_mask = MaskOnes<uint8_t>(output_min_bit);
// And then add in the high bits to keep.
existing_mask |= MaskOnes<uint8_t>(std::max<int>(8 - output_max_bit, 0))
<< output_max_bit;
// The index of the byte we're writing to.
const size_t byte_index = output_bit / 8;
// The full new value of the current byte. Start with just the existing bits
// we're not touching.
uint8_t new_byte = destination[byte_index] & existing_mask;
// Add in the new part.
new_byte |= new_byte_part << output_min_bit;
destination[byte_index] = new_byte;
bits_completed += new_bits;
}
assert(bits_completed == bits);
}
template <typename Integer, size_t bits, size_t offset>
typename std::enable_if<std::is_unsigned<Integer>::value &&
sizeof(Integer) * 8 >= bits, Integer>::type
UnpackBits(const gsl::span<const char> source) {
Integer result = 0;
assert(static_cast<size_t>(source.size()) * 8u >= bits + offset);
size_t bits_completed = 0;
while (bits_completed < bits) {
// Which logical bit (through all the bytes) we're reading at.
const size_t input_bit = offset + bits_completed;
// The lowest-numbered bit in the current byte we're reading from.
const size_t input_min_bit = input_bit % 8;
// The number of bits we're reading in this byte.
const size_t new_bits = std::min(8 - input_min_bit, bits - bits_completed);
// The index of the byte we're reading from.
const size_t byte_index = input_bit / 8;
// The part of the current byte we're actually reading.
const uint8_t new_byte_part =
(source[byte_index] >> input_min_bit) & MaskOnes<Integer>(new_bits);
result |= static_cast<Integer>(new_byte_part) << bits_completed;
bits_completed += new_bits;
}
assert(bits_completed == bits);
return result;
}
template <int bits>
uint32_t FloatToIntLinear(float min, float max, float value) {
static_assert(bits <= 31, "Only support 32-bit outputs for now");
static_assert(bits >= 1, "Bits must be positive");
// Start such that value in [0, 1) maps to [0, 2**bits) in the final
// result.
float result = (value - min) / (max - min);
// Multiply so that value is in [0, 2**bits).
// Make sure we do the shifting in a 32-bit integer, despite C++'s weird
// integer promotions, which is safe because bits is at most 31.
result *= static_cast<uint32_t>(UINT32_C(1) << bits);
if (result <= 0.0f) {
return 0;
}
const float max_result = MaskOnes<uint32_t>(bits);
if (result >= max_result) {
return max_result;
}
return static_cast<uint32_t>(result);
}
template <int bits>
float IntToFloatLinear(float min, float max, uint32_t value) {
static_assert(bits <= 31, "Only support 32-bit outputs for now");
static_assert(bits >= 1, "Bits must be positive");
const float max_value = MaskOnes<uint32_t>(bits);
if (value > max_value) {
value = max_value;
}
// Start such that result in [0, 2**bits) maps to [min, max) in the final
// result.
float result = value;
// Offset by half a bit so we return a value in the middle of each one.
// This causes us to return the middle floating point value which could be
// represented by a given integer value.
result += 0.5f;
// Multiply so that result is in [0, 1).
// Make sure we do the shifting in a 32-bit integer, despite C++'s weird
// integer promotions, which is safe because bits is at most 31.
result *= 1.0f / static_cast<uint32_t>(UINT32_C(1) << bits);
return min + result * (max - min);
}
} // namespace aos
#endif // AOS_UTIL_BITPACKING_H_