blob: 5fd9f537452c9bd8d5ec781b903b395be63959b2 [file] [log] [blame]
#include "aos/network/sctp_server.h"
#include <arpa/inet.h>
#include <net/if.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/sctp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <memory>
#include "aos/network/sctp_lib.h"
#include "aos/unique_malloc_ptr.h"
#include "glog/logging.h"
namespace aos {
namespace message_bridge {
SctpServer::SctpServer(std::string_view local_host, int local_port)
: sockaddr_local_(ResolveSocket(local_host, local_port)),
fd_(socket(sockaddr_local_.ss_family, SOCK_SEQPACKET, IPPROTO_SCTP)) {
LOG(INFO) << "socket(" << Family(sockaddr_local_)
<< ", SOCK_SEQPACKET, IPPROTOSCTP) = " << fd_;
PCHECK(fd_ != -1);
{
struct sctp_event_subscribe subscribe;
memset(&subscribe, 0, sizeof(subscribe));
subscribe.sctp_data_io_event = 1;
subscribe.sctp_association_event = 1;
subscribe.sctp_send_failure_event = 1;
subscribe.sctp_partial_delivery_event = 1;
PCHECK(setsockopt(fd_, SOL_SCTP, SCTP_EVENTS, (char *)&subscribe,
sizeof(subscribe)) == 0);
}
{
// Enable recvinfo when a packet arrives.
int on = 1;
PCHECK(setsockopt(fd_, IPPROTO_SCTP, SCTP_RECVRCVINFO, &on, sizeof(int)) ==
0);
}
{
// Allow one packet on the wire to have multiple source packets.
int full_interleaving = 2;
PCHECK(setsockopt(fd_, IPPROTO_SCTP, SCTP_FRAGMENT_INTERLEAVE,
&full_interleaving, sizeof(full_interleaving)) == 0);
}
{
// Turn off the NAGLE algorithm.
int on = 1;
PCHECK(setsockopt(fd_, IPPROTO_SCTP, SCTP_NODELAY, &on, sizeof(int)) == 0);
}
// And go!
PCHECK(bind(fd_, (struct sockaddr *)&sockaddr_local_,
sockaddr_local_.ss_family == AF_INET6
? sizeof(struct sockaddr_in6)
: sizeof(struct sockaddr_in)) == 0);
LOG(INFO) << "bind(" << fd_ << ", " << Address(sockaddr_local_) << ")";
PCHECK(listen(fd_, 100) == 0);
SetMaxSize(1000);
}
aos::unique_c_ptr<Message> SctpServer::Read() {
return ReadSctpMessage(fd_, max_size_);
}
void SctpServer::Send(std::string_view data, sctp_assoc_t snd_assoc_id,
int stream, int timetolive) {
struct iovec iov;
iov.iov_base = const_cast<char *>(data.data());
iov.iov_len = data.size();
// Use the assoc_id for the destination instead of the msg_name.
struct msghdr outmsg;
outmsg.msg_namelen = 0;
// Data to send.
outmsg.msg_iov = &iov;
outmsg.msg_iovlen = 1;
// Build up the sndinfo message.
char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
outmsg.msg_control = outcmsg;
outmsg.msg_controllen = CMSG_SPACE(sizeof(struct sctp_sndrcvinfo));
outmsg.msg_flags = 0;
struct cmsghdr *cmsg = CMSG_FIRSTHDR(&outmsg);
cmsg->cmsg_level = IPPROTO_SCTP;
cmsg->cmsg_type = SCTP_SNDRCV;
cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
struct sctp_sndrcvinfo *sinfo = (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
memset(sinfo, 0, sizeof(struct sctp_sndrcvinfo));
sinfo->sinfo_ppid = ++ppid_;
sinfo->sinfo_stream = stream;
sinfo->sinfo_flags = 0;
sinfo->sinfo_assoc_id = snd_assoc_id;
sinfo->sinfo_timetolive = timetolive;
// And send.
const ssize_t size = sendmsg(fd_, &outmsg, MSG_NOSIGNAL | MSG_DONTWAIT);
if (size == -1) {
if (errno != EPIPE) {
PCHECK(size == static_cast<ssize_t>(data.size()));
}
} else {
CHECK_EQ(static_cast<ssize_t>(data.size()), size);
}
}
void SctpServer::SetPriorityScheduler(sctp_assoc_t assoc_id) {
struct sctp_assoc_value scheduler;
memset(&scheduler, 0, sizeof(scheduler));
scheduler.assoc_id = assoc_id;
scheduler.assoc_value = SCTP_SS_PRIO;
if (setsockopt(fd(), IPPROTO_SCTP, SCTP_STREAM_SCHEDULER, &scheduler,
sizeof(scheduler)) != 0) {
PLOG(WARNING) << "Failed to set scheduler";
}
}
void SctpServer::SetStreamPriority(sctp_assoc_t assoc_id, int stream_id,
uint16_t priority) {
struct sctp_stream_value sctp_priority;
memset(&sctp_priority, 0, sizeof(sctp_priority));
sctp_priority.assoc_id = assoc_id;
sctp_priority.stream_id = stream_id;
sctp_priority.stream_value = priority;
if (setsockopt(fd(), IPPROTO_SCTP, SCTP_STREAM_SCHEDULER_VALUE,
&sctp_priority, sizeof(sctp_priority)) != 0) {
PLOG(WARNING) << "Failed to set scheduler";
}
}
} // namespace message_bridge
} // namespace aos