| #ifndef FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_ |
| #define FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_ |
| |
| #include "aos/common/controls/polytope.h" |
| |
| #include "aos/common/commonmath.h" |
| #include "frc971/control_loops/coerce_goal.h" |
| #include "frc971/control_loops/drivetrain/gear.h" |
| #ifdef __linux__ |
| #include "frc971/control_loops/drivetrain/drivetrain.q.h" |
| #include "aos/common/logging/logging.h" |
| #include "aos/common/logging/matrix_logging.h" |
| #include "aos/common/logging/queue_logging.h" |
| #include "aos/common/messages/robot_state.q.h" |
| #else |
| #include "frc971/control_loops/drivetrain/drivetrain_uc.q.h" |
| #endif // __linux__ |
| #include "frc971/control_loops/state_feedback_loop.h" |
| #include "frc971/control_loops/drivetrain/drivetrain_config.h" |
| |
| namespace frc971 { |
| namespace control_loops { |
| namespace drivetrain { |
| |
| template <typename Scalar = double> |
| class PolyDrivetrain { |
| public: |
| PolyDrivetrain(const DrivetrainConfig<Scalar> &dt_config, |
| StateFeedbackLoop<7, 2, 4, Scalar> *kf); |
| |
| int controller_index() const { return loop_->index(); } |
| |
| // Computes the speed of the motor given the hall effect position and the |
| // speed of the robot. |
| Scalar MotorSpeed(const constants::ShifterHallEffect &hall_effect, |
| Scalar shifter_position, Scalar velocity, Gear gear); |
| |
| void SetGoal(const ::frc971::control_loops::DrivetrainQueue::Goal &goal); |
| |
| void SetPosition( |
| const ::frc971::control_loops::DrivetrainQueue::Position *position, |
| Gear left_gear, Gear right_gear); |
| |
| Scalar FilterVelocity(Scalar throttle) const; |
| |
| Scalar MaxVelocity(); |
| |
| void Update(); |
| |
| void SetOutput(::frc971::control_loops::DrivetrainQueue::Output *output); |
| |
| void PopulateStatus(::frc971::control_loops::DrivetrainQueue::Status *status); |
| |
| // Computes the next state of a shifter given the current state and the |
| // requested state. |
| Gear UpdateSingleGear(Gear requested_gear, Gear current_gear); |
| |
| // Returns the current estimated velocity in m/s. |
| Scalar velocity() const { |
| return (loop_->mutable_X_hat()(0) + loop_->mutable_X_hat()(1)) / 2.0; |
| } |
| |
| private: |
| StateFeedbackLoop<7, 2, 4, Scalar> *kf_; |
| |
| const ::aos::controls::HVPolytope<2, 4, 4, Scalar> U_Poly_; |
| |
| ::std::unique_ptr<StateFeedbackLoop<2, 2, 2, Scalar>> loop_; |
| |
| const Scalar ttrust_; |
| Scalar wheel_; |
| Scalar throttle_; |
| bool quickturn_; |
| |
| Gear left_gear_; |
| Gear right_gear_; |
| |
| ::frc971::control_loops::DrivetrainQueue::Position last_position_; |
| ::frc971::control_loops::DrivetrainQueue::Position position_; |
| int counter_; |
| DrivetrainConfig<Scalar> dt_config_; |
| |
| Scalar goal_left_velocity_ = 0.0; |
| Scalar goal_right_velocity_ = 0.0; |
| |
| // Stored from the last iteration, for logging shifting logic. |
| Scalar left_motor_speed_ = 0.0; |
| Scalar right_motor_speed_ = 0.0; |
| Scalar current_left_velocity_ = 0.0; |
| Scalar current_right_velocity_ = 0.0; |
| }; |
| |
| template <typename Scalar> |
| PolyDrivetrain<Scalar>::PolyDrivetrain( |
| const DrivetrainConfig<Scalar> &dt_config, |
| StateFeedbackLoop<7, 2, 4, Scalar> *kf) |
| : kf_(kf), |
| U_Poly_((Eigen::Matrix<Scalar, 4, 2>() << /*[[*/ 1, 0 /*]*/, |
| /*[*/ -1, 0 /*]*/, |
| /*[*/ 0, 1 /*]*/, |
| /*[*/ 0, -1 /*]]*/) |
| .finished(), |
| (Eigen::Matrix<Scalar, 4, 1>() << /*[[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]*/, |
| /*[*/ 12 /*]]*/) |
| .finished(), |
| (Eigen::Matrix<Scalar, 2, 4>() << /*[[*/ 12, 12, -12, -12 /*]*/, |
| /*[*/ -12, 12, 12, -12 /*]*/) |
| .finished()), |
| loop_(new StateFeedbackLoop<2, 2, 2, Scalar>( |
| dt_config.make_v_drivetrain_loop())), |
| ttrust_(1.1), |
| wheel_(0.0), |
| throttle_(0.0), |
| quickturn_(false), |
| left_gear_(dt_config.default_high_gear ? Gear::HIGH : Gear::LOW), |
| right_gear_(dt_config.default_high_gear ? Gear::HIGH : Gear::LOW), |
| counter_(0), |
| dt_config_(dt_config) { |
| last_position_.Zero(); |
| position_.Zero(); |
| } |
| |
| template <typename Scalar> |
| Scalar PolyDrivetrain<Scalar>::MotorSpeed( |
| const constants::ShifterHallEffect &hall_effect, Scalar shifter_position, |
| Scalar velocity, Gear gear) { |
| const Scalar high_gear_speed = |
| velocity / dt_config_.high_gear_ratio / dt_config_.wheel_radius; |
| const Scalar low_gear_speed = |
| velocity / dt_config_.low_gear_ratio / dt_config_.wheel_radius; |
| |
| if (shifter_position < hall_effect.clear_low) { |
| // We're in low gear, so return speed for that gear. |
| return low_gear_speed; |
| } else if (shifter_position > hall_effect.clear_high) { |
| // We're in high gear, so return speed for that gear. |
| return high_gear_speed; |
| } |
| |
| // Not in gear, so speed-match to destination gear. |
| switch (gear) { |
| case Gear::HIGH: |
| case Gear::SHIFTING_UP: |
| return high_gear_speed; |
| case Gear::LOW: |
| case Gear::SHIFTING_DOWN: |
| default: |
| return low_gear_speed; |
| break; |
| } |
| } |
| |
| template <typename Scalar> |
| Gear PolyDrivetrain<Scalar>::UpdateSingleGear(Gear requested_gear, |
| Gear current_gear) { |
| const Gear shift_up = |
| (dt_config_.shifter_type == ShifterType::HALL_EFFECT_SHIFTER) |
| ? Gear::SHIFTING_UP |
| : Gear::HIGH; |
| const Gear shift_down = |
| (dt_config_.shifter_type == ShifterType::HALL_EFFECT_SHIFTER) |
| ? Gear::SHIFTING_DOWN |
| : Gear::LOW; |
| if (current_gear != requested_gear) { |
| if (IsInGear(current_gear)) { |
| if (requested_gear == Gear::HIGH) { |
| if (current_gear != Gear::HIGH) { |
| current_gear = shift_up; |
| } |
| } else { |
| if (current_gear != Gear::LOW) { |
| current_gear = shift_down; |
| } |
| } |
| } else { |
| if (requested_gear == Gear::HIGH && current_gear == Gear::SHIFTING_DOWN) { |
| current_gear = Gear::SHIFTING_UP; |
| } else if (requested_gear == Gear::LOW && |
| current_gear == Gear::SHIFTING_UP) { |
| current_gear = Gear::SHIFTING_DOWN; |
| } |
| } |
| } |
| return current_gear; |
| } |
| |
| template <typename Scalar> |
| void PolyDrivetrain<Scalar>::SetGoal( |
| const ::frc971::control_loops::DrivetrainQueue::Goal &goal) { |
| const Scalar wheel = goal.wheel; |
| const Scalar throttle = goal.throttle; |
| const bool quickturn = goal.quickturn; |
| const bool highgear = goal.highgear; |
| |
| // Apply a sin function that's scaled to make it feel better. |
| const Scalar angular_range = M_PI_2 * dt_config_.wheel_non_linearity; |
| |
| wheel_ = sin(angular_range * wheel) / sin(angular_range); |
| wheel_ = sin(angular_range * wheel_) / sin(angular_range); |
| wheel_ = 2.0 * wheel - wheel_; |
| quickturn_ = quickturn; |
| |
| if (quickturn_) { |
| wheel_ *= dt_config_.quickturn_wheel_multiplier; |
| } else { |
| wheel_ *= dt_config_.wheel_multiplier; |
| } |
| |
| static const Scalar kThrottleDeadband = 0.05; |
| if (::std::abs(throttle) < kThrottleDeadband) { |
| throttle_ = 0; |
| } else { |
| throttle_ = copysign( |
| (::std::abs(throttle) - kThrottleDeadband) / (1.0 - kThrottleDeadband), |
| throttle); |
| } |
| |
| Gear requested_gear = highgear ? Gear::HIGH : Gear::LOW; |
| |
| left_gear_ = UpdateSingleGear(requested_gear, left_gear_); |
| right_gear_ = UpdateSingleGear(requested_gear, right_gear_); |
| } |
| |
| template <typename Scalar> |
| void PolyDrivetrain<Scalar>::SetPosition( |
| const ::frc971::control_loops::DrivetrainQueue::Position *position, |
| Gear left_gear, Gear right_gear) { |
| left_gear_ = left_gear; |
| right_gear_ = right_gear; |
| last_position_ = position_; |
| position_ = *position; |
| } |
| |
| template <typename Scalar> |
| Scalar PolyDrivetrain<Scalar>::FilterVelocity(Scalar throttle) const { |
| const Eigen::Matrix<Scalar, 2, 2> FF = |
| loop_->plant().B().inverse() * |
| (Eigen::Matrix<Scalar, 2, 2>::Identity() - loop_->plant().A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<Scalar, 2, 2> FF_high = |
| loop_->plant().coefficients(kHighGearController).B.inverse() * |
| (Eigen::Matrix<Scalar, 2, 2>::Identity() - |
| loop_->plant().coefficients(kHighGearController).A); |
| |
| ::Eigen::Matrix<Scalar, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const Scalar min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| const Scalar min_K_sum = loop_->controller().K().col(min_FF_sum_index).sum(); |
| const Scalar high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const Scalar adjusted_ff_voltage = |
| ::aos::Clip(throttle * 12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return (adjusted_ff_voltage + |
| ttrust_ * min_K_sum * (loop_->X_hat(0, 0) + loop_->X_hat(1, 0)) / |
| 2.0) / |
| (ttrust_ * min_K_sum + min_FF_sum); |
| } |
| |
| template <typename Scalar> |
| Scalar PolyDrivetrain<Scalar>::MaxVelocity() { |
| const Eigen::Matrix<Scalar, 2, 2> FF = |
| loop_->plant().B().inverse() * |
| (Eigen::Matrix<Scalar, 2, 2>::Identity() - loop_->plant().A()); |
| |
| constexpr int kHighGearController = 3; |
| const Eigen::Matrix<Scalar, 2, 2> FF_high = |
| loop_->plant().coefficients(kHighGearController).B.inverse() * |
| (Eigen::Matrix<Scalar, 2, 2>::Identity() - |
| loop_->plant().coefficients(kHighGearController).A); |
| |
| ::Eigen::Matrix<Scalar, 1, 2> FF_sum = FF.colwise().sum(); |
| int min_FF_sum_index; |
| const Scalar min_FF_sum = FF_sum.minCoeff(&min_FF_sum_index); |
| // const Scalar min_K_sum = loop_->K().col(min_FF_sum_index).sum(); |
| const Scalar high_min_FF_sum = FF_high.col(0).sum(); |
| |
| const Scalar adjusted_ff_voltage = |
| ::aos::Clip(12.0 * min_FF_sum / high_min_FF_sum, -12.0, 12.0); |
| return adjusted_ff_voltage / min_FF_sum; |
| } |
| |
| template <typename Scalar> |
| void PolyDrivetrain<Scalar>::Update() { |
| if (dt_config_.loop_type == LoopType::CLOSED_LOOP) { |
| loop_->mutable_X_hat()(0, 0) = kf_->X_hat()(1, 0); |
| loop_->mutable_X_hat()(1, 0) = kf_->X_hat()(3, 0); |
| } |
| |
| // TODO(austin): Observer for the current velocity instead of difference |
| // calculations. |
| ++counter_; |
| |
| if (IsInGear(left_gear_) && IsInGear(right_gear_)) { |
| // FF * X = U (steady state) |
| const Eigen::Matrix<Scalar, 2, 2> FF = |
| loop_->plant().B().inverse() * |
| (Eigen::Matrix<Scalar, 2, 2>::Identity() - loop_->plant().A()); |
| |
| // Invert the plant to figure out how the velocity filter would have to |
| // work |
| // out in order to filter out the forwards negative inertia. |
| // This math assumes that the left and right power and velocity are |
| // equals, |
| // and that the plant is the same on the left and right. |
| const Scalar fvel = FilterVelocity(throttle_); |
| |
| const Scalar sign_svel = wheel_ * ((fvel > 0.0) ? 1.0 : -1.0); |
| Scalar steering_velocity; |
| if (quickturn_) { |
| steering_velocity = wheel_ * MaxVelocity(); |
| } else { |
| steering_velocity = ::std::abs(fvel) * wheel_; |
| } |
| const Scalar left_velocity = fvel - steering_velocity; |
| const Scalar right_velocity = fvel + steering_velocity; |
| goal_left_velocity_ = left_velocity; |
| goal_right_velocity_ = right_velocity; |
| |
| // Integrate velocity to get the position. |
| // This position is used to get integral control. |
| loop_->mutable_R() << left_velocity, right_velocity; |
| |
| if (!quickturn_) { |
| // K * R = w |
| Eigen::Matrix<Scalar, 1, 2> equality_k; |
| equality_k << 1 + sign_svel, -(1 - sign_svel); |
| const Scalar equality_w = 0.0; |
| |
| // Construct a constraint on R by manipulating the constraint on U |
| ::aos::controls::HVPolytope<2, 4, 4, Scalar> R_poly_hv( |
| U_Poly_.static_H() * (loop_->controller().K() + FF), |
| U_Poly_.static_k() + |
| U_Poly_.static_H() * loop_->controller().K() * loop_->X_hat(), |
| (loop_->controller().K() + FF).inverse() * |
| ::aos::controls::ShiftPoints<2, 4, Scalar>( |
| U_Poly_.StaticVertices(), |
| loop_->controller().K() * loop_->X_hat())); |
| |
| // Limit R back inside the box. |
| loop_->mutable_R() = |
| CoerceGoal<Scalar>(R_poly_hv, equality_k, equality_w, loop_->R()); |
| } |
| |
| const Eigen::Matrix<Scalar, 2, 1> FF_volts = FF * loop_->R(); |
| const Eigen::Matrix<Scalar, 2, 1> U_ideal = |
| loop_->controller().K() * (loop_->R() - loop_->X_hat()) + FF_volts; |
| |
| for (int i = 0; i < 2; i++) { |
| loop_->mutable_U()[i] = ::aos::Clip(U_ideal[i], -12, 12); |
| } |
| |
| if (dt_config_.loop_type == LoopType::OPEN_LOOP) { |
| loop_->mutable_X_hat() = |
| loop_->plant().A() * loop_->X_hat() + loop_->plant().B() * loop_->U(); |
| } |
| |
| // Housekeeping: set the shifting logging values to zero, because we're not shifting |
| left_motor_speed_ = 0.0; |
| right_motor_speed_ = 0.0; |
| current_left_velocity_ = 0.0; |
| current_right_velocity_ = 0.0; |
| } else { |
| current_left_velocity_ = |
| (position_.left_encoder - last_position_.left_encoder) / dt_config_.dt; |
| current_right_velocity_ = |
| (position_.right_encoder - last_position_.right_encoder) / |
| dt_config_.dt; |
| left_motor_speed_ = |
| MotorSpeed(dt_config_.left_drive, position_.left_shifter_position, |
| current_left_velocity_, left_gear_); |
| right_motor_speed_ = |
| MotorSpeed(dt_config_.right_drive, position_.right_shifter_position, |
| current_right_velocity_, right_gear_); |
| |
| goal_left_velocity_ = current_left_velocity_; |
| goal_right_velocity_ = current_right_velocity_; |
| |
| // Any motor is not in gear. Speed match. |
| ::Eigen::Matrix<Scalar, 1, 1> R_left; |
| ::Eigen::Matrix<Scalar, 1, 1> R_right; |
| R_left(0, 0) = left_motor_speed_; |
| R_right(0, 0) = right_motor_speed_; |
| |
| const Scalar wiggle = |
| (static_cast<Scalar>((counter_ % 30) / 15) - 0.5) * 8.0; |
| |
| loop_->mutable_U(0, 0) = ::aos::Clip( |
| (R_left / dt_config_.v)(0, 0) + (IsInGear(left_gear_) ? 0 : wiggle), |
| -12.0, 12.0); |
| loop_->mutable_U(1, 0) = ::aos::Clip( |
| (R_right / dt_config_.v)(0, 0) + (IsInGear(right_gear_) ? 0 : wiggle), |
| -12.0, 12.0); |
| #ifdef __linux__ |
| loop_->mutable_U() *= 12.0 / ::aos::robot_state->voltage_battery; |
| #endif // __linux__ |
| } |
| } |
| |
| template <typename Scalar> |
| void PolyDrivetrain<Scalar>::SetOutput( |
| ::frc971::control_loops::DrivetrainQueue::Output *output) { |
| if (output != NULL) { |
| output->left_voltage = loop_->U(0, 0); |
| output->right_voltage = loop_->U(1, 0); |
| output->left_high = MaybeHigh(left_gear_); |
| output->right_high = MaybeHigh(right_gear_); |
| } |
| } |
| |
| template <typename Scalar> |
| void PolyDrivetrain<Scalar>::PopulateStatus( |
| ::frc971::control_loops::DrivetrainQueue::Status *status) { |
| status->left_velocity_goal = goal_left_velocity_; |
| status->right_velocity_goal = goal_right_velocity_; |
| |
| status->cim_logging.left_in_gear = IsInGear(left_gear_); |
| status->cim_logging.left_motor_speed = left_motor_speed_; |
| status->cim_logging.left_velocity = current_left_velocity_; |
| |
| status->cim_logging.right_in_gear = IsInGear(right_gear_); |
| status->cim_logging.right_motor_speed = right_motor_speed_; |
| status->cim_logging.right_velocity = current_right_velocity_; |
| } |
| |
| |
| } // namespace drivetrain |
| } // namespace control_loops |
| } // namespace frc971 |
| |
| #endif // FRC971_CONTROL_LOOPS_DRIVETRAIN_POLYDRIVETRAIN_H_ |