blob: 472baf3ae47b9cf204633083329ec3dc35f767b4 [file] [log] [blame]
#include <fstream>
#include "aos/logging/implementations.h"
#include "aos/logging/logging.h"
#include "aos/vision/blob/codec.h"
#include "aos/vision/blob/find_blob.h"
#include "aos/vision/events/socket_types.h"
#include "aos/vision/events/udp.h"
#include "y2019/jevois/camera/image_stream.h"
#include "y2019/jevois/camera/reader.h"
#include "y2019/jevois/serial.h"
#include "y2019/jevois/structures.h"
#include "y2019/jevois/uart.h"
#include "y2019/vision/target_finder.h"
using ::aos::events::DataSocket;
using ::aos::events::RXUdpSocket;
using ::aos::events::TCPServer;
using ::aos::vision::DataRef;
using ::aos::vision::Int32Codec;
using ::aos::monotonic_clock;
using ::y2019::jevois::open_via_terminos;
using aos::vision::Segment;
class CameraStream : public ::y2019::camera::ImageStreamEvent {
public:
CameraStream(::aos::vision::CameraParams params, const ::std::string &fname)
: ImageStreamEvent(fname, params) {}
void ProcessImage(DataRef data, monotonic_clock::time_point monotonic_now) {
LOG(INFO, "got frame: %d\n", (int)data.size());
if (on_frame_) on_frame_(data, monotonic_now);
}
void set_on_frame(const std::function<
void(DataRef, monotonic_clock::time_point)> &on_frame) {
on_frame_ = on_frame;
}
private:
std::function<void(DataRef, monotonic_clock::time_point)> on_frame_;
};
int open_terminos(const char *tty_name) { return open_via_terminos(tty_name); }
std::string GetFileContents(const std::string &filename) {
std::ifstream in(filename, std::ios::in | std::ios::binary);
if (in) {
std::string contents;
in.seekg(0, std::ios::end);
contents.resize(in.tellg());
in.seekg(0, std::ios::beg);
in.read(&contents[0], contents.size());
in.close();
return (contents);
}
fprintf(stderr, "Could not read file: %s\n", filename.c_str());
exit(-1);
}
using aos::vision::ImageRange;
using aos::vision::RangeImage;
using aos::vision::ImageFormat;
#define MASH(v0, v1, v2, v3, v4) \
((uint8_t(v0) << 4) | (uint8_t(v1) << 3) | (uint8_t(v2) << 2) | \
(uint8_t(v3) << 1) | (uint8_t(v4)))
// YUYV image types:
inline RangeImage DoThresholdYUYV(ImageFormat fmt, const char *data,
uint8_t value) {
std::vector<std::vector<ImageRange>> ranges;
ranges.reserve(fmt.h);
for (int y = 0; y < fmt.h; ++y) {
const char *row = fmt.w * y * 2 + data;
bool p_score = false;
int pstart = -1;
std::vector<ImageRange> rngs;
for (int x = 0; x < fmt.w / 4; ++x) {
uint8_t v[8];
memcpy(&v[0], row + x * 4 * 2, 8);
uint8_t pattern =
MASH(p_score, v[0] > value, v[2] > value, v[4] > value, v[6] > value);
switch (pattern) {
/*
# Ruby code to generate the below code:
32.times do |v|
puts "case MASH(#{[v[4], v[3], v[2], v[1], v[0]].join(", ")}):"
p_score = v[4]
pstart = "pstart"
4.times do |i|
if v[3 - i] != p_score
if (p_score == 1)
puts " rngs.emplace_back(ImageRange(#{pstart},
x * 4 + #{i}));"
else
pstart = "x * 4 + #{i}"
end
p_score = v[3 - i]
end
end
if (pstart != "pstart")
puts " pstart = #{pstart};"
end
if (p_score != v[4])
puts " p_score = #{["false", "true"][v[0]]};"
end
puts " break;"
end
*/
case MASH(0, 0, 0, 0, 0):
break;
case MASH(0, 0, 0, 0, 1):
pstart = x * 4 + 3;
p_score = true;
break;
case MASH(0, 0, 0, 1, 0):
rngs.emplace_back(ImageRange(x * 4 + 2, x * 4 + 3));
pstart = x * 4 + 2;
break;
case MASH(0, 0, 0, 1, 1):
pstart = x * 4 + 2;
p_score = true;
break;
case MASH(0, 0, 1, 0, 0):
rngs.emplace_back(ImageRange(x * 4 + 1, x * 4 + 2));
pstart = x * 4 + 1;
break;
case MASH(0, 0, 1, 0, 1):
rngs.emplace_back(ImageRange(x * 4 + 1, x * 4 + 2));
pstart = x * 4 + 3;
p_score = true;
break;
case MASH(0, 0, 1, 1, 0):
rngs.emplace_back(ImageRange(x * 4 + 1, x * 4 + 3));
pstart = x * 4 + 1;
break;
case MASH(0, 0, 1, 1, 1):
pstart = x * 4 + 1;
p_score = true;
break;
case MASH(0, 1, 0, 0, 0):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 1));
pstart = x * 4 + 0;
break;
case MASH(0, 1, 0, 0, 1):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 1));
pstart = x * 4 + 3;
p_score = true;
break;
case MASH(0, 1, 0, 1, 0):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 1));
rngs.emplace_back(ImageRange(x * 4 + 2, x * 4 + 3));
pstart = x * 4 + 2;
break;
case MASH(0, 1, 0, 1, 1):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 1));
pstart = x * 4 + 2;
p_score = true;
break;
case MASH(0, 1, 1, 0, 0):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 2));
pstart = x * 4 + 0;
break;
case MASH(0, 1, 1, 0, 1):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 2));
pstart = x * 4 + 3;
p_score = true;
break;
case MASH(0, 1, 1, 1, 0):
rngs.emplace_back(ImageRange(x * 4 + 0, x * 4 + 3));
pstart = x * 4 + 0;
break;
case MASH(0, 1, 1, 1, 1):
pstart = x * 4 + 0;
p_score = true;
break;
case MASH(1, 0, 0, 0, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
p_score = false;
break;
case MASH(1, 0, 0, 0, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
pstart = x * 4 + 3;
break;
case MASH(1, 0, 0, 1, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
rngs.emplace_back(ImageRange(x * 4 + 2, x * 4 + 3));
pstart = x * 4 + 2;
p_score = false;
break;
case MASH(1, 0, 0, 1, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
pstart = x * 4 + 2;
break;
case MASH(1, 0, 1, 0, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
rngs.emplace_back(ImageRange(x * 4 + 1, x * 4 + 2));
pstart = x * 4 + 1;
p_score = false;
break;
case MASH(1, 0, 1, 0, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
rngs.emplace_back(ImageRange(x * 4 + 1, x * 4 + 2));
pstart = x * 4 + 3;
break;
case MASH(1, 0, 1, 1, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
rngs.emplace_back(ImageRange(x * 4 + 1, x * 4 + 3));
pstart = x * 4 + 1;
p_score = false;
break;
case MASH(1, 0, 1, 1, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 0));
pstart = x * 4 + 1;
break;
case MASH(1, 1, 0, 0, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 1));
p_score = false;
break;
case MASH(1, 1, 0, 0, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 1));
pstart = x * 4 + 3;
break;
case MASH(1, 1, 0, 1, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 1));
rngs.emplace_back(ImageRange(x * 4 + 2, x * 4 + 3));
pstart = x * 4 + 2;
p_score = false;
break;
case MASH(1, 1, 0, 1, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 1));
pstart = x * 4 + 2;
break;
case MASH(1, 1, 1, 0, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 2));
p_score = false;
break;
case MASH(1, 1, 1, 0, 1):
rngs.emplace_back(ImageRange(pstart, x * 4 + 2));
pstart = x * 4 + 3;
break;
case MASH(1, 1, 1, 1, 0):
rngs.emplace_back(ImageRange(pstart, x * 4 + 3));
p_score = false;
break;
case MASH(1, 1, 1, 1, 1):
break;
}
for (int i = 0; i < 4; ++i) {
if ((v[i * 2] > value) != p_score) {
if (p_score) {
rngs.emplace_back(ImageRange(pstart, x * 4 + i));
} else {
pstart = x * 4 + i;
}
p_score = !p_score;
}
}
}
if (p_score) {
rngs.emplace_back(ImageRange(pstart, fmt.w));
}
ranges.push_back(rngs);
}
return RangeImage(0, std::move(ranges));
}
#undef MASH
int main(int argc, char **argv) {
(void)argc;
(void)argv;
using namespace y2019::vision;
using frc971::jevois::CameraCommand;
// gflags::ParseCommandLineFlags(&argc, &argv, false);
::aos::logging::Init();
::aos::logging::AddImplementation(
new ::aos::logging::StreamLogImplementation(stderr));
int itsDev = open_terminos("/dev/ttyS0");
frc971::jevois::CobsPacketizer<frc971::jevois::uart_to_camera_size()> cobs;
// Uncomment these to printf directly to stdout to get debug info...
// dup2(itsDev, 1);
// dup2(itsDev, 2);
TargetFinder finder_;
aos::vision::CameraParams params0;
params0.set_exposure(50);
params0.set_brightness(40);
params0.set_width(640);
params0.set_fps(15);
params0.set_height(480);
::std::unique_ptr<CameraStream> camera0(
new CameraStream(params0, "/dev/video0"));
camera0->set_on_frame([&](DataRef data,
monotonic_clock::time_point monotonic_now) {
aos::vision::ImageFormat fmt{640, 480};
// Use threshold from aos::vision. This will run at 15 FPS.
aos::vision::BlobList imgs =
aos::vision::FindBlobs(aos::vision::DoThresholdYUYV(fmt, data.data(), 120));
finder_.PreFilter(&imgs);
LOG(INFO, "Blobs: (%zu).\n", imgs.size());
constexpr bool verbose = false;
::std::vector<Polygon> raw_polys;
for (const RangeImage &blob : imgs) {
// Convert blobs to contours in the corrected space.
ContourNode* contour = finder_.GetContour(blob);
::std::vector<::Eigen::Vector2f> unwarped_contour =
finder_.UnWarpContour(contour);
const Polygon polygon =
finder_.FindPolygon(::std::move(unwarped_contour), verbose);
if (!polygon.segments.empty()) {
raw_polys.push_back(polygon);
}
}
LOG(INFO, "Polygons: (%zu).\n", raw_polys.size());
// Calculate each component side of a possible target.
::std::vector<TargetComponent> target_component_list =
finder_.FillTargetComponentList(raw_polys, verbose);
LOG(INFO, "Components: (%zu).\n", target_component_list.size());
// Put the compenents together into targets.
::std::vector<Target> target_list =
finder_.FindTargetsFromComponents(target_component_list, verbose);
LOG(INFO, "Potential Target: (%zu).\n", target_list.size());
// Use the solver to generate an intermediate version of our results.
::std::vector<IntermediateResult> results;
for (const Target &target : target_list) {
results.emplace_back(finder_.ProcessTargetToResult(target, verbose));
}
LOG(INFO, "Raw Results: (%zu).\n", results.size());
results = finder_.FilterResults(results, 30, verbose);
LOG(INFO, "Results: (%zu).\n", results.size());
// TODO: Select top 3 (randomly?)
frc971::jevois::CameraFrame frame{};
for (size_t i = 0; i < results.size() && i < frame.targets.max_size();
++i) {
const auto &result = results[i].extrinsics;
frame.targets.push_back(frc971::jevois::Target{
static_cast<float>(result.z), static_cast<float>(result.y),
static_cast<float>(result.r2), static_cast<float>(result.r1)});
}
frame.age = std::chrono::duration_cast<frc971::jevois::camera_duration>(
aos::monotonic_clock::now() - monotonic_now);
// If we succeed in writing our delimiter, then write out the rest of the
// frame. If not, no point in continuing.
if (write(itsDev, "\0", 1) == 1) {
const auto serialized_frame = frc971::jevois::UartPackToTeensy(frame);
// We don't really care if this succeeds or not. If it fails for some
// reason, we'll just try again with the next frame, and the other end
// will find the new packet just fine.
ssize_t n =
write(itsDev, serialized_frame.data(), serialized_frame.size());
if (n != (ssize_t)serialized_frame.size()) {
LOG(INFO, "Some problem happened");
}
}
});
aos::events::EpollLoop loop;
while (true) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
camera0->ReadEvent();
{
constexpr size_t kBufferSize = frc971::jevois::uart_to_teensy_size();
char data[kBufferSize];
ssize_t n = read(itsDev, &data[0], kBufferSize);
if (n >= 1) {
LOG(INFO, "Serial bytes: %zd", n);
cobs.ParseData(gsl::span<const char>(&data[0], n));
auto packet = cobs.received_packet();
if (!packet.empty()) {
auto calibration_question =
frc971::jevois::UartUnpackToCamera(packet);
if (calibration_question) {
const auto &calibration = *calibration_question;
IntrinsicParams *intrinsics = finder_.mutable_intrinsics();
intrinsics->mount_angle = calibration.calibration(0, 0);
intrinsics->focal_length = calibration.calibration(0, 1);
intrinsics->barrel_mount = calibration.calibration(0, 2);
switch (calibration.camera_command) {
case CameraCommand::kNormal:
case CameraCommand::kAs:
break;
case CameraCommand::kUsb:
return 0;
case CameraCommand::kCameraPassthrough:
return system("touch /tmp/do_not_export_sd_card");
}
} else {
printf("bad frame\n");
}
cobs.clear_received_packet();
}
}
}
}
// TODO: Fix event loop on jevois:
// loop.Add(camera0.get());
// loop.Run();
}