blob: fba72c89993c3b93676b20035b308c3f8e31ba98 [file] [log] [blame]
#!/usr/bin/python
import control_loop
import controls
import polytope
import polydrivetrain
import numpy
import sys
import matplotlib
from matplotlib import pylab
class Elevator(control_loop.ControlLoop):
def __init__(self, name="Elevator", mass=None):
super(Elevator, self).__init__(name)
# Stall Torque in N m
self.stall_torque = 0.476
# Stall Current in Amps
self.stall_current = 80.730
# Free Speed in RPM
self.free_speed = 13906.0
# Free Current in Amps
self.free_current = 5.820
# Mass of the elevator
if mass is None:
self.mass = 13.0
else:
self.mass = mass
# Resistance of the motor
self.R = 12.0 / self.stall_current
# Motor velocity constant
self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
(12.0 - self.R * self.free_current))
# Torque constant
self.Kt = self.stall_torque / self.stall_current
# Gear ratio
self.G = (56.0 / 12.0) * (84.0 / 14.0)
# Pulley diameter
self.r = 32 * 0.005 / numpy.pi / 2.0
# Control loop time step
self.dt = 0.005
# Elevator left/right spring constant (N/m)
self.spring = 800.0
# State is [average position, average velocity,
# position difference/2, velocity difference/2]
# Input is [V_left, V_right]
C1 = self.spring / (self.mass * 0.5)
C2 = self.Kt * self.G / (self.mass * 0.5 * self.r * self.R)
C3 = self.G * self.G * self.Kt / (
self.R * self.r * self.r * self.mass * 0.5 * self.Kv)
self.A_continuous = numpy.matrix(
[[0, 1, 0, 0],
[0, -C3, 0, 0],
[0, 0, 0, 1],
[0, 0, -C1 * 2.0, -C3]])
print "Full speed is", C2 / C3 * 12.0
# Start with the unmodified input
self.B_continuous = numpy.matrix(
[[0, 0],
[C2 / 2.0, C2 / 2.0],
[0, 0],
[C2 / 2.0, -C2 / 2.0]])
self.C = numpy.matrix([[1, 0, 1, 0],
[1, 0, -1, 0]])
self.D = numpy.matrix([[0, 0],
[0, 0]])
self.A, self.B = self.ContinuousToDiscrete(
self.A_continuous, self.B_continuous, self.dt)
print self.A
controlability = controls.ctrb(self.A, self.B);
print "Rank of augmented controlability matrix.", numpy.linalg.matrix_rank(
controlability)
q_pos = 0.02
q_vel = 0.400
q_pos_diff = 0.01
q_vel_diff = 0.45
self.Q = numpy.matrix([[(1.0 / (q_pos ** 2.0)), 0.0, 0.0, 0.0],
[0.0, (1.0 / (q_vel ** 2.0)), 0.0, 0.0],
[0.0, 0.0, (1.0 / (q_pos_diff ** 2.0)), 0.0],
[0.0, 0.0, 0.0, (1.0 / (q_vel_diff ** 2.0))]])
self.R = numpy.matrix([[(1.0 / (12.0 ** 2.0)), 0.0],
[0.0, 1.0 / (12.0 ** 2.0)]])
self.K = controls.dlqr(self.A, self.B, self.Q, self.R)
print self.K
print numpy.linalg.eig(self.A - self.B * self.K)[0]
self.rpl = 0.20
self.ipl = 0.05
self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
self.rpl + 1j * self.ipl,
self.rpl - 1j * self.ipl,
self.rpl - 1j * self.ipl])
# The box formed by U_min and U_max must encompass all possible values,
# or else Austin's code gets angry.
self.U_max = numpy.matrix([[12.0], [12.0]])
self.U_min = numpy.matrix([[-12.0], [-12.0]])
self.InitializeState()
def CapU(U):
if U[0, 0] - U[1, 0] > 24:
return numpy.matrix([[12], [-12]])
elif U[0, 0] - U[1, 0] < -24:
return numpy.matrix([[-12], [12]])
else:
max_u = max(U[0, 0], U[1, 0])
min_u = min(U[0, 0], U[1, 0])
if max_u > 12:
return U - (max_u - 12)
if min_u < -12:
return U - (min_u + 12)
return U
def run_test(elevator, initial_X, goal, max_separation_error=0.01,
show_graph=True, iterations=200, controller_elevator=None,
observer_elevator=None):
"""Runs the elevator plant with an initial condition and goal.
The tests themselves are not terribly sophisticated; I just test for
whether the goal has been reached and whether the separation goes
outside of the initial and goal values by more than max_separation_error.
Prints out something for a failure of either condition and returns
False if tests fail.
Args:
elevator: elevator object to use.
initial_X: starting state.
goal: goal state.
show_graph: Whether or not to display a graph showing the changing
states and voltages.
iterations: Number of timesteps to run the model for.
controller_elevator: elevator object to get K from, or None if we should
use elevator.
observer_elevator: elevator object to use for the observer, or None if we
should use the actual state.
"""
elevator.X = initial_X
if controller_elevator is None:
controller_elevator = elevator
if observer_elevator is not None:
observer_elevator.X_hat = initial_X + 0.01
observer_elevator.X_hat = initial_X
# Various lists for graphing things.
t = []
x_avg = []
x_sep = []
x_hat_avg = []
x_hat_sep = []
v_avg = []
v_sep = []
u_left = []
u_right = []
sep_plot_gain = 100.0
for i in xrange(iterations):
X_hat = elevator.X
if observer_elevator is not None:
X_hat = observer_elevator.X_hat
x_hat_avg.append(observer_elevator.X_hat[0, 0])
x_hat_sep.append(observer_elevator.X_hat[2, 0] * sep_plot_gain)
U = controller_elevator.K * (goal - X_hat)
U = CapU(U)
x_avg.append(elevator.X[0, 0])
v_avg.append(elevator.X[1, 0])
x_sep.append(elevator.X[2, 0] * sep_plot_gain)
v_sep.append(elevator.X[3, 0])
if observer_elevator is not None:
observer_elevator.PredictObserver(U)
elevator.Update(U)
if observer_elevator is not None:
observer_elevator.Y = elevator.Y
observer_elevator.CorrectObserver(U)
t.append(i * elevator.dt)
u_left.append(U[0, 0])
u_right.append(U[1, 0])
print numpy.linalg.inv(elevator.A)
print "delta time is ", elevator.dt
print "Velocity at t=0 is ", x_avg[0], v_avg[0], x_sep[0], v_sep[0]
print "Velocity at t=1+dt is ", x_avg[1], v_avg[1], x_sep[1], v_sep[1]
if show_graph:
pylab.subplot(2, 1, 1)
pylab.plot(t, x_avg, label='x avg')
pylab.plot(t, x_sep, label='x sep')
if observer_elevator is not None:
pylab.plot(t, x_hat_avg, label='x_hat avg')
pylab.plot(t, x_hat_sep, label='x_hat sep')
pylab.legend()
pylab.subplot(2, 1, 2)
pylab.plot(t, u_left, label='u left')
pylab.plot(t, u_right, label='u right')
pylab.legend()
pylab.show()
def main(argv):
loaded_mass = 25
#loaded_mass = 0
elevator = Elevator(mass=13 + loaded_mass)
elevator_controller = Elevator(mass=13 + 15)
observer_elevator = Elevator(mass=13 + 15)
#observer_elevator = None
# Test moving the elevator with constant separation.
initial_X = numpy.matrix([[0.0], [0.0], [0.01], [0.0]])
#initial_X = numpy.matrix([[0.0], [0.0], [0.00], [0.0]])
R = numpy.matrix([[1.0], [0.0], [0.0], [0.0]])
run_test(elevator, initial_X, R, controller_elevator=elevator_controller,
observer_elevator=observer_elevator)
# Write the generated constants out to a file.
if len(argv) != 3:
print "Expected .h file name and .cc file name for the elevator."
else:
elevator = Elevator("Elevator")
loop_writer = control_loop.ControlLoopWriter("Elevator", [elevator])
if argv[1][-3:] == '.cc':
loop_writer.Write(argv[2], argv[1])
else:
loop_writer.Write(argv[1], argv[2])
if __name__ == '__main__':
sys.exit(main(sys.argv))