blob: 7fa160c779227c19bb8af5966ab5a99e1de9f020 [file] [log] [blame]
#include <inttypes.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <array>
#include <chrono>
#include <cmath>
#include <functional>
#include <mutex>
#include <thread>
#include "AnalogInput.h"
#include "DigitalGlitchFilter.h"
#include "DriverStation.h"
#include "Encoder.h"
#include "Compressor.h"
#include "VictorSP.h"
#undef ERROR
#include "aos/common/commonmath.h"
#include "aos/common/logging/logging.h"
#include "aos/common/logging/queue_logging.h"
#include "aos/common/messages/robot_state.q.h"
#include "aos/common/stl_mutex.h"
#include "aos/common/time.h"
#include "aos/common/util/compiler_memory_barrier.h"
#include "aos/common/util/log_interval.h"
#include "aos/common/util/phased_loop.h"
#include "aos/linux_code/init.h"
#include "frc971/control_loops/control_loops.q.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/wpilib/ADIS16448.h"
#include "frc971/wpilib/buffered_pcm.h"
#include "frc971/wpilib/buffered_solenoid.h"
#include "frc971/wpilib/gyro_sender.h"
#include "frc971/wpilib/dma.h"
#include "frc971/wpilib/dma_edge_counting.h"
#include "frc971/wpilib/encoder_and_potentiometer.h"
#include "frc971/wpilib/interrupt_edge_counting.h"
#include "frc971/wpilib/joystick_sender.h"
#include "frc971/wpilib/logging.q.h"
#include "frc971/wpilib/loop_output_handler.h"
#include "frc971/wpilib/pdp_fetcher.h"
#include "frc971/wpilib/wpilib_interface.h"
#include "frc971/wpilib/wpilib_robot_base.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "y2017_bot3/control_loops/drivetrain/drivetrain_dog_motor_plant.h"
#include "y2017_bot3/control_loops/superstructure/superstructure.q.h"
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
using ::frc971::control_loops::drivetrain_queue;
using ::y2017_bot3::control_loops::superstructure_queue;
using ::aos::monotonic_clock;
namespace chrono = ::std::chrono;
namespace y2017_bot3 {
namespace wpilib {
namespace {
constexpr double kMaxBringupPower = 12.0;
constexpr double kDrivetrainCyclesPerRevolution = 256;
constexpr double kDrivetrainEncoderCountsPerRevolution =
kDrivetrainCyclesPerRevolution * 4;
constexpr double kDrivetrainEncoderRatio =
1.0 * control_loops::drivetrain::kWheelRadius;
constexpr double kMaxDrivetrainEncoderPulsesPerSecond =
control_loops::drivetrain::kFreeSpeed *
control_loops::drivetrain::kHighOutputRatio /
kDrivetrainEncoderRatio *
kDrivetrainEncoderCountsPerRevolution;
// TODO(Brian): Fix the interpretation of the result of GetRaw here and in the
// DMA stuff and then removing the * 2.0 in *_translate.
// The low bit is direction.
// TODO(brian): Replace this with ::std::make_unique once all our toolchains
// have support.
template <class T, class... U>
std::unique_ptr<T> make_unique(U &&... u) {
return std::unique_ptr<T>(new T(std::forward<U>(u)...));
}
// TODO(brian): Use ::std::max instead once we have C++14 so that can be
// constexpr.
template <typename T>
constexpr T max(T a, T b) {
return (a > b) ? a : b;
}
template <typename T, typename... Rest>
constexpr T max(T a, T b, T c, Rest... rest) {
return max(max(a, b), c, rest...);
}
double hall_translate(double in) {
// Turn voltage from our 3-state halls into a ratio that the loop can use.
return in / 5.0;
}
double drivetrain_translate(int32_t in) {
return -static_cast<double>(in) / (256.0 /*cpr*/ * 4.0 /*4x*/) *
kDrivetrainEncoderRatio *
control_loops::drivetrain::kWheelRadius *
2.0 * M_PI;
}
double drivetrain_velocity_translate(double in) {
return (1.0 / in) / 256.0 /*cpr*/ *
kDrivetrainEncoderRatio *
control_loops::drivetrain::kWheelRadius * 2.0 * M_PI;
}
constexpr double kMaxFastEncoderPulsesPerSecond =
kMaxDrivetrainEncoderPulsesPerSecond;
static_assert(kMaxFastEncoderPulsesPerSecond <= 1300000,
"fast encoders are too fast");
// Class to send position messages with sensor readings to our loops.
class SensorReader {
public:
SensorReader() {
// Set to filter out anything shorter than 1/4 of the minimum pulse width
// we should ever see.
fast_encoder_filter_.SetPeriodNanoSeconds(
static_cast<int>(1 / 4.0 /* built-in tolerance */ /
kMaxFastEncoderPulsesPerSecond * 1e9 +
0.5));
hall_filter_.SetPeriodNanoSeconds(100000);
}
void set_drivetrain_left_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
drivetrain_left_encoder_ = ::std::move(encoder);
}
void set_drivetrain_right_encoder(::std::unique_ptr<Encoder> encoder) {
fast_encoder_filter_.Add(encoder.get());
drivetrain_right_encoder_ = ::std::move(encoder);
}
void set_drivetrain_left_hall(::std::unique_ptr<AnalogInput> analog) {
drivetrain_left_hall_ = ::std::move(analog);
}
void set_drivetrain_right_hall(::std::unique_ptr<AnalogInput> analog) {
drivetrain_right_hall_ = ::std::move(analog);
}
void set_pwm_trigger(::std::unique_ptr<DigitalInput> pwm_trigger) {
medium_encoder_filter_.Add(pwm_trigger.get());
pwm_trigger_ = ::std::move(pwm_trigger);
}
// All of the DMA-related set_* calls must be made before this, and it
// doesn't
// hurt to do all of them.
void set_dma(::std::unique_ptr<DMA> dma) {
dma_synchronizer_.reset(
new ::frc971::wpilib::DMASynchronizer(::std::move(dma)));
}
void RunPWMDetecter() {
::aos::SetCurrentThreadRealtimePriority(41);
pwm_trigger_->RequestInterrupts();
// Rising edge only.
pwm_trigger_->SetUpSourceEdge(true, false);
monotonic_clock::time_point last_posedge_monotonic =
monotonic_clock::min_time;
while (run_) {
auto ret = pwm_trigger_->WaitForInterrupt(1.0, true);
if (ret == InterruptableSensorBase::WaitResult::kRisingEdge) {
// Grab all the clocks.
const double pwm_fpga_time = pwm_trigger_->ReadRisingTimestamp();
aos_compiler_memory_barrier();
const double fpga_time_before = GetFPGATime() * 1e-6;
aos_compiler_memory_barrier();
const monotonic_clock::time_point monotonic_now =
monotonic_clock::now();
aos_compiler_memory_barrier();
const double fpga_time_after = GetFPGATime() * 1e-6;
aos_compiler_memory_barrier();
const double fpga_offset =
(fpga_time_after + fpga_time_before) / 2.0 - pwm_fpga_time;
// Compute when the edge was.
const monotonic_clock::time_point monotonic_edge =
monotonic_now - chrono::duration_cast<chrono::nanoseconds>(
chrono::duration<double>(fpga_offset));
LOG(INFO, "Got PWM pulse %f spread, %f offset, %lld trigger\n",
fpga_time_after - fpga_time_before, fpga_offset,
monotonic_edge.time_since_epoch().count());
// Compute bounds on the timestep and sampling times.
const double fpga_sample_length = fpga_time_after - fpga_time_before;
const chrono::nanoseconds elapsed_time =
monotonic_edge - last_posedge_monotonic;
last_posedge_monotonic = monotonic_edge;
// Verify that the values are sane.
if (fpga_sample_length > 2e-5 || fpga_sample_length < 0) {
continue;
}
if (fpga_offset < 0 || fpga_offset > 0.00015) {
continue;
}
if (elapsed_time >
chrono::microseconds(5050) + chrono::microseconds(4) ||
elapsed_time <
chrono::microseconds(5050) - chrono::microseconds(4)) {
continue;
}
// Good edge!
{
::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
last_tick_time_monotonic_timepoint_ = last_posedge_monotonic;
last_period_ = elapsed_time;
}
} else {
LOG(INFO, "PWM triggered %d\n", ret);
}
}
pwm_trigger_->CancelInterrupts();
}
void operator()() {
::aos::SetCurrentThreadName("SensorReader");
my_pid_ = getpid();
ds_ = &DriverStation::GetInstance();
dma_synchronizer_->Start();
::aos::time::PhasedLoop phased_loop(last_period_,
::std::chrono::milliseconds(3));
chrono::nanoseconds filtered_period = last_period_;
::std::thread pwm_detecter_thread(
::std::bind(&SensorReader::RunPWMDetecter, this));
::aos::SetCurrentThreadRealtimePriority(40);
while (run_) {
{
const int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(WARNING, "SensorReader skipped %d iterations\n", iterations - 1);
}
}
RunIteration();
monotonic_clock::time_point last_tick_timepoint;
chrono::nanoseconds period;
{
::std::unique_lock<::aos::stl_mutex> locker(tick_time_mutex_);
last_tick_timepoint = last_tick_time_monotonic_timepoint_;
period = last_period_;
}
if (last_tick_timepoint == monotonic_clock::min_time) {
continue;
}
chrono::nanoseconds new_offset = phased_loop.OffsetFromIntervalAndTime(
period, last_tick_timepoint + chrono::microseconds(2050));
// TODO(austin): If this is the first edge in a while, skip to it (plus
// an offset). Otherwise, slowly drift time to line up.
phased_loop.set_interval_and_offset(period, new_offset);
}
pwm_detecter_thread.join();
}
void RunIteration() {
::frc971::wpilib::SendRobotState(my_pid_, ds_);
{
auto drivetrain_message = drivetrain_queue.position.MakeMessage();
drivetrain_message->right_encoder =
drivetrain_translate(drivetrain_right_encoder_->GetRaw());
drivetrain_message->right_speed =
drivetrain_velocity_translate(drivetrain_right_encoder_->GetPeriod());
drivetrain_message->left_encoder =
-drivetrain_translate(drivetrain_left_encoder_->GetRaw());
drivetrain_message->left_speed =
drivetrain_velocity_translate(drivetrain_left_encoder_->GetPeriod());
drivetrain_message->left_shifter_position =
hall_translate(drivetrain_left_hall_->GetVoltage());
drivetrain_message->right_shifter_position =
hall_translate(drivetrain_right_hall_->GetVoltage());
drivetrain_message.Send();
}
{
auto superstructure_message = superstructure_queue.position.MakeMessage();
superstructure_message.Send();
}
dma_synchronizer_->RunIteration();
}
void Quit() { run_ = false; }
private:
double encoder_translate(int32_t value, double counts_per_revolution,
double ratio) {
return static_cast<double>(value) / counts_per_revolution * ratio *
(2.0 * M_PI);
}
int32_t my_pid_;
DriverStation *ds_;
// Mutex to manage access to the period and tick time variables.
::aos::stl_mutex tick_time_mutex_;
monotonic_clock::time_point last_tick_time_monotonic_timepoint_ =
monotonic_clock::min_time;
chrono::nanoseconds last_period_ = chrono::microseconds(5050);
::std::unique_ptr<::frc971::wpilib::DMASynchronizer> dma_synchronizer_;
::std::unique_ptr<Encoder> drivetrain_left_encoder_,
drivetrain_right_encoder_;
::std::unique_ptr<AnalogInput> drivetrain_left_hall_, drivetrain_right_hall_;
::std::unique_ptr<DigitalInput> pwm_trigger_;
::std::atomic<bool> run_{true};
DigitalGlitchFilter fast_encoder_filter_, medium_encoder_filter_,
hall_filter_;
};
class SolenoidWriter {
public:
SolenoidWriter(const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm)
: pcm_(pcm),
drivetrain_(".y2017_bot3.control_loops.drivetrain_queue.output"),
superstructure_(
".y2017_bot3.control_loops.superstructure_queue.output") {}
void set_compressor(::std::unique_ptr<Compressor> compressor) {
compressor_ = ::std::move(compressor);
}
void set_drivetrain_shifter(
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
drivetrain_shifter_ = ::std::move(s);
}
void set_fingers(::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> s) {
fingers_ = ::std::move(s);
}
void operator()() {
compressor_->Start();
::aos::SetCurrentThreadName("Solenoids");
::aos::SetCurrentThreadRealtimePriority(27);
::aos::time::PhasedLoop phased_loop(::std::chrono::milliseconds(20),
::std::chrono::milliseconds(1));
while (run_) {
{
int iterations = phased_loop.SleepUntilNext();
if (iterations != 1) {
LOG(DEBUG, "Solenoids skipped %d iterations\n", iterations - 1);
}
}
{
drivetrain_.FetchLatest();
if (drivetrain_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *drivetrain_);
drivetrain_shifter_->Set(
!(drivetrain_->left_high || drivetrain_->right_high));
}
}
{
superstructure_.FetchLatest();
if (superstructure_.get()) {
LOG_STRUCT(DEBUG, "solenoids", *superstructure_);
fingers_->Set(superstructure_->fingers_out);
}
}
{
::frc971::wpilib::PneumaticsToLog to_log;
{ to_log.compressor_on = compressor_->Enabled(); }
pcm_->Flush();
to_log.read_solenoids = pcm_->GetAll();
LOG_STRUCT(DEBUG, "pneumatics info", to_log);
}
}
}
void Quit() { run_ = false; }
private:
const ::std::unique_ptr<::frc971::wpilib::BufferedPcm> &pcm_;
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> drivetrain_shifter_;
::std::unique_ptr<::frc971::wpilib::BufferedSolenoid> fingers_;
::std::unique_ptr<Compressor> compressor_;
::aos::Queue<::frc971::control_loops::DrivetrainQueue::Output> drivetrain_;
::aos::Queue<::y2017_bot3::control_loops::SuperstructureQueue::Output>
superstructure_;
::std::atomic<bool> run_{true};
};
class DrivetrainWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
void set_drivetrain_left_victor(::std::unique_ptr<::frc::VictorSP> t) {
drivetrain_left_victor_ = ::std::move(t);
}
void set_drivetrain_right_victor(::std::unique_ptr<::frc::VictorSP> t) {
drivetrain_right_victor_ = ::std::move(t);
};
private:
virtual void Read() override {
::frc971::control_loops::drivetrain_queue.output.FetchAnother();
}
virtual void Write() override {
auto &queue = ::frc971::control_loops::drivetrain_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
drivetrain_left_victor_->SetSpeed(-queue->left_voltage / 12.0);
drivetrain_right_victor_->SetSpeed(queue->right_voltage / 12.0);
}
virtual void Stop() override {
LOG(WARNING, "drivetrain output too old\n");
drivetrain_left_victor_->SetDisabled();
drivetrain_right_victor_->SetDisabled();
}
::std::unique_ptr<::frc::VictorSP> drivetrain_left_victor_,
drivetrain_right_victor_;
};
class SuperstructureWriter : public ::frc971::wpilib::LoopOutputHandler {
public:
void set_rollers_victor(::std::unique_ptr<::frc::VictorSP> t) {
rollers_victor_ = ::std::move(t);
}
void set_hanger_victor(::std::unique_ptr<::frc::VictorSP> t) {
hanger_victor_ = ::std::move(t);
}
private:
virtual void Read() override {
::y2017_bot3::control_loops::superstructure_queue.output.FetchAnother();
}
virtual void Write() override {
auto &queue = ::y2017_bot3::control_loops::superstructure_queue.output;
LOG_STRUCT(DEBUG, "will output", *queue);
rollers_victor_->SetSpeed(queue->voltage_rollers / 12.0);
hanger_victor_->SetSpeed(queue->hanger_voltage / 12.0);
}
virtual void Stop() override {
LOG(WARNING, "Superstructure output too old.\n");
rollers_victor_->SetDisabled();
hanger_victor_->SetDisabled();
}
::std::unique_ptr<::frc::VictorSP> rollers_victor_;
::std::unique_ptr<::frc::VictorSP> hanger_victor_;
};
class WPILibRobot : public ::frc971::wpilib::WPILibRobotBase {
public:
::std::unique_ptr<Encoder> make_encoder(int index) {
return make_unique<Encoder>(10 + index * 2, 11 + index * 2, false,
Encoder::k4X);
}
void Run() override {
::aos::InitNRT();
::aos::SetCurrentThreadName("StartCompetition");
::frc971::wpilib::JoystickSender joystick_sender;
::std::thread joystick_thread(::std::ref(joystick_sender));
::frc971::wpilib::PDPFetcher pdp_fetcher;
::std::thread pdp_fetcher_thread(::std::ref(pdp_fetcher));
SensorReader reader;
// TODO(sabina): Update port numbers
reader.set_drivetrain_left_encoder(make_encoder(0));
reader.set_drivetrain_right_encoder(make_encoder(1));
reader.set_drivetrain_left_hall(make_unique<AnalogInput>(0));
reader.set_drivetrain_right_hall(make_unique<AnalogInput>(1));
reader.set_pwm_trigger(make_unique<DigitalInput>(0));
reader.set_dma(make_unique<DMA>());
::std::thread reader_thread(::std::ref(reader));
::frc971::wpilib::GyroSender gyro_sender;
::std::thread gyro_thread(::std::ref(gyro_sender));
DrivetrainWriter drivetrain_writer;
drivetrain_writer.set_drivetrain_left_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(0)));
drivetrain_writer.set_drivetrain_right_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(1)));
::std::thread drivetrain_writer_thread(::std::ref(drivetrain_writer));
SuperstructureWriter superstructure_writer;
superstructure_writer.set_rollers_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(2)));
superstructure_writer.set_hanger_victor(
::std::unique_ptr<::frc::VictorSP>(new ::frc::VictorSP(3)));
::std::unique_ptr<::frc971::wpilib::BufferedPcm> pcm(
new ::frc971::wpilib::BufferedPcm());
SolenoidWriter solenoid_writer(pcm);
solenoid_writer.set_drivetrain_shifter(pcm->MakeSolenoid(0));
solenoid_writer.set_fingers(pcm->MakeSolenoid(2));
solenoid_writer.set_compressor(make_unique<Compressor>());
::std::thread solenoid_thread(::std::ref(solenoid_writer));
// Wait forever. Not much else to do...
while (true) {
const int r = select(0, nullptr, nullptr, nullptr, nullptr);
if (r != 0) {
PLOG(WARNING, "infinite select failed");
} else {
PLOG(WARNING, "infinite select succeeded??\n");
}
}
LOG(ERROR, "Exiting WPILibRobot\n");
joystick_sender.Quit();
joystick_thread.join();
pdp_fetcher.Quit();
pdp_fetcher_thread.join();
reader.Quit();
reader_thread.join();
gyro_sender.Quit();
gyro_thread.join();
drivetrain_writer.Quit();
drivetrain_writer_thread.join();
solenoid_writer.Quit();
solenoid_thread.join();
::aos::Cleanup();
}
};
} // namespace
} // namespace wpilib
} // namespace y2017_bot3
AOS_ROBOT_CLASS(::y2017_bot3::wpilib::WPILibRobot);