blob: 74616a7303a24036bf6b126b2b9bfd39af327fad [file] [log] [blame]
#include "scaling.h"
#if EMBEDDED != 1
// Set values lower than threshold SCALING_REG to 1
void limit_scaling(c_float *D, c_int n) {
c_int i;
for (i = 0; i < n; i++) {
D[i] = D[i] < MIN_SCALING ? 1.0 : D[i];
D[i] = D[i] > MAX_SCALING ? MAX_SCALING : D[i];
}
}
/**
* Compute infinite norm of the columns of the KKT matrix without forming it
*
* The norm is stored in the vector v = (D, E)
*
* @param P Cost matrix
* @param A Constraints matrix
* @param D Norm of columns related to variables
* @param D_temp_A Temporary vector for norm of columns of A
* @param E Norm of columns related to constraints
* @param n Dimension of KKT matrix
*/
void compute_inf_norm_cols_KKT(const csc *P, const csc *A,
c_float *D, c_float *D_temp_A,
c_float *E, c_int n) {
// First half
// [ P ]
// [ A ]
mat_inf_norm_cols_sym_triu(P, D);
mat_inf_norm_cols(A, D_temp_A);
vec_ew_max_vec(D, D_temp_A, D, n);
// Second half
// [ A']
// [ 0 ]
mat_inf_norm_rows(A, E);
}
c_int scale_data(OSQPWorkspace *work) {
// Scale KKT matrix
//
// [ P A']
// [ A 0 ]
//
// with diagonal matrix
//
// S = [ D ]
// [ E ]
//
c_int i; // Iterations index
c_int n, m; // Number of constraints and variables
c_float c_temp; // Cost function scaling
c_float inf_norm_q; // Infinity norm of q
n = work->data->n;
m = work->data->m;
// Initialize scaling to 1
work->scaling->c = 1.0;
vec_set_scalar(work->scaling->D, 1., work->data->n);
vec_set_scalar(work->scaling->Dinv, 1., work->data->n);
vec_set_scalar(work->scaling->E, 1., work->data->m);
vec_set_scalar(work->scaling->Einv, 1., work->data->m);
for (i = 0; i < work->settings->scaling; i++) {
//
// First Ruiz step
//
// Compute norm of KKT columns
compute_inf_norm_cols_KKT(work->data->P, work->data->A,
work->D_temp, work->D_temp_A,
work->E_temp, n);
// Set to 1 values with 0 norms (avoid crazy scaling)
limit_scaling(work->D_temp, n);
limit_scaling(work->E_temp, m);
// Take square root of norms
vec_ew_sqrt(work->D_temp, n);
vec_ew_sqrt(work->E_temp, m);
// Divide scalings D and E by themselves
vec_ew_recipr(work->D_temp, work->D_temp, n);
vec_ew_recipr(work->E_temp, work->E_temp, m);
// Equilibrate matrices P and A and vector q
// P <- DPD
mat_premult_diag(work->data->P, work->D_temp);
mat_postmult_diag(work->data->P, work->D_temp);
// A <- EAD
mat_premult_diag(work->data->A, work->E_temp);
mat_postmult_diag(work->data->A, work->D_temp);
// q <- Dq
vec_ew_prod(work->D_temp, work->data->q, work->data->q, n);
// Update equilibration matrices D and E
vec_ew_prod(work->scaling->D, work->D_temp, work->scaling->D, n);
vec_ew_prod(work->scaling->E, work->E_temp, work->scaling->E, m);
//
// Cost normalization step
//
// Compute avg norm of cols of P
mat_inf_norm_cols_sym_triu(work->data->P, work->D_temp);
c_temp = vec_mean(work->D_temp, n);
// Compute inf norm of q
inf_norm_q = vec_norm_inf(work->data->q, n);
// If norm_q == 0, set it to 1 (ignore it in the scaling)
// NB: Using the same function as with vectors here
limit_scaling(&inf_norm_q, 1);
// Compute max between avg norm of cols of P and inf norm of q
c_temp = c_max(c_temp, inf_norm_q);
// Limit scaling (use same function as with vectors)
limit_scaling(&c_temp, 1);
// Invert scaling c = 1 / cost_measure
c_temp = 1. / c_temp;
// Scale P
mat_mult_scalar(work->data->P, c_temp);
// Scale q
vec_mult_scalar(work->data->q, c_temp, n);
// Update cost scaling
work->scaling->c *= c_temp;
}
// Store cinv, Dinv, Einv
work->scaling->cinv = 1. / work->scaling->c;
vec_ew_recipr(work->scaling->D, work->scaling->Dinv, work->data->n);
vec_ew_recipr(work->scaling->E, work->scaling->Einv, work->data->m);
// Scale problem vectors l, u
vec_ew_prod(work->scaling->E, work->data->l, work->data->l, work->data->m);
vec_ew_prod(work->scaling->E, work->data->u, work->data->u, work->data->m);
return 0;
}
#endif // EMBEDDED
c_int unscale_data(OSQPWorkspace *work) {
// Unscale cost
mat_mult_scalar(work->data->P, work->scaling->cinv);
mat_premult_diag(work->data->P, work->scaling->Dinv);
mat_postmult_diag(work->data->P, work->scaling->Dinv);
vec_mult_scalar(work->data->q, work->scaling->cinv, work->data->n);
vec_ew_prod(work->scaling->Dinv, work->data->q, work->data->q, work->data->n);
// Unscale constraints
mat_premult_diag(work->data->A, work->scaling->Einv);
mat_postmult_diag(work->data->A, work->scaling->Dinv);
vec_ew_prod(work->scaling->Einv, work->data->l, work->data->l, work->data->m);
vec_ew_prod(work->scaling->Einv, work->data->u, work->data->u, work->data->m);
return 0;
}
c_int unscale_solution(OSQPWorkspace *work) {
// primal
vec_ew_prod(work->scaling->D,
work->solution->x,
work->solution->x,
work->data->n);
// dual
vec_ew_prod(work->scaling->E,
work->solution->y,
work->solution->y,
work->data->m);
vec_mult_scalar(work->solution->y, work->scaling->cinv, work->data->m);
return 0;
}