| #include "scaling.h" |
| |
| #if EMBEDDED != 1 |
| |
| |
| // Set values lower than threshold SCALING_REG to 1 |
| void limit_scaling(c_float *D, c_int n) { |
| c_int i; |
| |
| for (i = 0; i < n; i++) { |
| D[i] = D[i] < MIN_SCALING ? 1.0 : D[i]; |
| D[i] = D[i] > MAX_SCALING ? MAX_SCALING : D[i]; |
| } |
| } |
| |
| /** |
| * Compute infinite norm of the columns of the KKT matrix without forming it |
| * |
| * The norm is stored in the vector v = (D, E) |
| * |
| * @param P Cost matrix |
| * @param A Constraints matrix |
| * @param D Norm of columns related to variables |
| * @param D_temp_A Temporary vector for norm of columns of A |
| * @param E Norm of columns related to constraints |
| * @param n Dimension of KKT matrix |
| */ |
| void compute_inf_norm_cols_KKT(const csc *P, const csc *A, |
| c_float *D, c_float *D_temp_A, |
| c_float *E, c_int n) { |
| // First half |
| // [ P ] |
| // [ A ] |
| mat_inf_norm_cols_sym_triu(P, D); |
| mat_inf_norm_cols(A, D_temp_A); |
| vec_ew_max_vec(D, D_temp_A, D, n); |
| |
| // Second half |
| // [ A'] |
| // [ 0 ] |
| mat_inf_norm_rows(A, E); |
| } |
| |
| c_int scale_data(OSQPWorkspace *work) { |
| // Scale KKT matrix |
| // |
| // [ P A'] |
| // [ A 0 ] |
| // |
| // with diagonal matrix |
| // |
| // S = [ D ] |
| // [ E ] |
| // |
| |
| c_int i; // Iterations index |
| c_int n, m; // Number of constraints and variables |
| c_float c_temp; // Cost function scaling |
| c_float inf_norm_q; // Infinity norm of q |
| |
| n = work->data->n; |
| m = work->data->m; |
| |
| // Initialize scaling to 1 |
| work->scaling->c = 1.0; |
| vec_set_scalar(work->scaling->D, 1., work->data->n); |
| vec_set_scalar(work->scaling->Dinv, 1., work->data->n); |
| vec_set_scalar(work->scaling->E, 1., work->data->m); |
| vec_set_scalar(work->scaling->Einv, 1., work->data->m); |
| |
| |
| for (i = 0; i < work->settings->scaling; i++) { |
| // |
| // First Ruiz step |
| // |
| |
| // Compute norm of KKT columns |
| compute_inf_norm_cols_KKT(work->data->P, work->data->A, |
| work->D_temp, work->D_temp_A, |
| work->E_temp, n); |
| |
| // Set to 1 values with 0 norms (avoid crazy scaling) |
| limit_scaling(work->D_temp, n); |
| limit_scaling(work->E_temp, m); |
| |
| // Take square root of norms |
| vec_ew_sqrt(work->D_temp, n); |
| vec_ew_sqrt(work->E_temp, m); |
| |
| // Divide scalings D and E by themselves |
| vec_ew_recipr(work->D_temp, work->D_temp, n); |
| vec_ew_recipr(work->E_temp, work->E_temp, m); |
| |
| // Equilibrate matrices P and A and vector q |
| // P <- DPD |
| mat_premult_diag(work->data->P, work->D_temp); |
| mat_postmult_diag(work->data->P, work->D_temp); |
| |
| // A <- EAD |
| mat_premult_diag(work->data->A, work->E_temp); |
| mat_postmult_diag(work->data->A, work->D_temp); |
| |
| // q <- Dq |
| vec_ew_prod(work->D_temp, work->data->q, work->data->q, n); |
| |
| // Update equilibration matrices D and E |
| vec_ew_prod(work->scaling->D, work->D_temp, work->scaling->D, n); |
| vec_ew_prod(work->scaling->E, work->E_temp, work->scaling->E, m); |
| |
| // |
| // Cost normalization step |
| // |
| |
| // Compute avg norm of cols of P |
| mat_inf_norm_cols_sym_triu(work->data->P, work->D_temp); |
| c_temp = vec_mean(work->D_temp, n); |
| |
| // Compute inf norm of q |
| inf_norm_q = vec_norm_inf(work->data->q, n); |
| |
| // If norm_q == 0, set it to 1 (ignore it in the scaling) |
| // NB: Using the same function as with vectors here |
| limit_scaling(&inf_norm_q, 1); |
| |
| // Compute max between avg norm of cols of P and inf norm of q |
| c_temp = c_max(c_temp, inf_norm_q); |
| |
| // Limit scaling (use same function as with vectors) |
| limit_scaling(&c_temp, 1); |
| |
| // Invert scaling c = 1 / cost_measure |
| c_temp = 1. / c_temp; |
| |
| // Scale P |
| mat_mult_scalar(work->data->P, c_temp); |
| |
| // Scale q |
| vec_mult_scalar(work->data->q, c_temp, n); |
| |
| // Update cost scaling |
| work->scaling->c *= c_temp; |
| } |
| |
| |
| // Store cinv, Dinv, Einv |
| work->scaling->cinv = 1. / work->scaling->c; |
| vec_ew_recipr(work->scaling->D, work->scaling->Dinv, work->data->n); |
| vec_ew_recipr(work->scaling->E, work->scaling->Einv, work->data->m); |
| |
| |
| // Scale problem vectors l, u |
| vec_ew_prod(work->scaling->E, work->data->l, work->data->l, work->data->m); |
| vec_ew_prod(work->scaling->E, work->data->u, work->data->u, work->data->m); |
| |
| return 0; |
| } |
| |
| #endif // EMBEDDED |
| |
| c_int unscale_data(OSQPWorkspace *work) { |
| // Unscale cost |
| mat_mult_scalar(work->data->P, work->scaling->cinv); |
| mat_premult_diag(work->data->P, work->scaling->Dinv); |
| mat_postmult_diag(work->data->P, work->scaling->Dinv); |
| vec_mult_scalar(work->data->q, work->scaling->cinv, work->data->n); |
| vec_ew_prod(work->scaling->Dinv, work->data->q, work->data->q, work->data->n); |
| |
| // Unscale constraints |
| mat_premult_diag(work->data->A, work->scaling->Einv); |
| mat_postmult_diag(work->data->A, work->scaling->Dinv); |
| vec_ew_prod(work->scaling->Einv, work->data->l, work->data->l, work->data->m); |
| vec_ew_prod(work->scaling->Einv, work->data->u, work->data->u, work->data->m); |
| |
| return 0; |
| } |
| |
| c_int unscale_solution(OSQPWorkspace *work) { |
| // primal |
| vec_ew_prod(work->scaling->D, |
| work->solution->x, |
| work->solution->x, |
| work->data->n); |
| |
| // dual |
| vec_ew_prod(work->scaling->E, |
| work->solution->y, |
| work->solution->y, |
| work->data->m); |
| vec_mult_scalar(work->solution->y, work->scaling->cinv, work->data->m); |
| |
| return 0; |
| } |