| #include "cs.h" |
| |
| |
| static void* csc_malloc(c_int n, c_int size) { |
| return c_malloc(n * size); |
| } |
| |
| static void* csc_calloc(c_int n, c_int size) { |
| return c_calloc(n, size); |
| } |
| |
| csc* csc_matrix(c_int m, c_int n, c_int nzmax, c_float *x, c_int *i, c_int *p) |
| { |
| csc *M = (csc *)c_malloc(sizeof(csc)); |
| |
| if (!M) return OSQP_NULL; |
| |
| M->m = m; |
| M->n = n; |
| M->nz = -1; |
| M->nzmax = nzmax; |
| M->x = x; |
| M->i = i; |
| M->p = p; |
| return M; |
| } |
| |
| csc* csc_spalloc(c_int m, c_int n, c_int nzmax, c_int values, c_int triplet) { |
| csc *A = csc_calloc(1, sizeof(csc)); /* allocate the csc struct */ |
| |
| if (!A) return OSQP_NULL; /* out of memory */ |
| |
| A->m = m; /* define dimensions and nzmax */ |
| A->n = n; |
| A->nzmax = nzmax = c_max(nzmax, 1); |
| A->nz = triplet ? 0 : -1; /* allocate triplet or comp.col */ |
| A->p = csc_malloc(triplet ? nzmax : n + 1, sizeof(c_int)); |
| A->i = csc_malloc(nzmax, sizeof(c_int)); |
| A->x = values ? csc_malloc(nzmax, sizeof(c_float)) : OSQP_NULL; |
| if (!A->p || !A->i || (values && !A->x)){ |
| csc_spfree(A); |
| return OSQP_NULL; |
| } else return A; |
| } |
| |
| void csc_spfree(csc *A) { |
| if (A){ |
| if (A->p) c_free(A->p); |
| if (A->i) c_free(A->i); |
| if (A->x) c_free(A->x); |
| c_free(A); |
| } |
| } |
| |
| csc* triplet_to_csc(const csc *T, c_int *TtoC) { |
| c_int m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj; |
| c_float *Cx, *Tx; |
| csc *C; |
| |
| m = T->m; |
| n = T->n; |
| Ti = T->i; |
| Tj = T->p; |
| Tx = T->x; |
| nz = T->nz; |
| C = csc_spalloc(m, n, nz, Tx != OSQP_NULL, 0); /* allocate result */ |
| w = csc_calloc(n, sizeof(c_int)); /* get workspace */ |
| |
| if (!C || !w) return csc_done(C, w, OSQP_NULL, 0); /* out of memory */ |
| |
| Cp = C->p; |
| Ci = C->i; |
| Cx = C->x; |
| |
| for (k = 0; k < nz; k++) w[Tj[k]]++; /* column counts */ |
| csc_cumsum(Cp, w, n); /* column pointers */ |
| |
| for (k = 0; k < nz; k++) { |
| Ci[p = w[Tj[k]]++] = Ti[k]; /* A(i,j) is the pth entry in C */ |
| |
| if (Cx) { |
| Cx[p] = Tx[k]; |
| |
| if (TtoC != OSQP_NULL) TtoC[k] = p; // Assign vector of indices |
| } |
| } |
| return csc_done(C, w, OSQP_NULL, 1); /* success; free w and return C */ |
| } |
| |
| csc* triplet_to_csr(const csc *T, c_int *TtoC) { |
| c_int m, n, nz, p, k, *Cp, *Cj, *w, *Ti, *Tj; |
| c_float *Cx, *Tx; |
| csc *C; |
| |
| m = T->m; |
| n = T->n; |
| Ti = T->i; |
| Tj = T->p; |
| Tx = T->x; |
| nz = T->nz; |
| C = csc_spalloc(m, n, nz, Tx != OSQP_NULL, 0); /* allocate result */ |
| w = csc_calloc(m, sizeof(c_int)); /* get workspace */ |
| |
| if (!C || !w) return csc_done(C, w, OSQP_NULL, 0); /* out of memory */ |
| |
| Cp = C->p; |
| Cj = C->i; |
| Cx = C->x; |
| |
| for (k = 0; k < nz; k++) w[Ti[k]]++; /* row counts */ |
| csc_cumsum(Cp, w, m); /* row pointers */ |
| |
| for (k = 0; k < nz; k++) { |
| Cj[p = w[Ti[k]]++] = Tj[k]; /* A(i,j) is the pth entry in C */ |
| |
| if (Cx) { |
| Cx[p] = Tx[k]; |
| |
| if (TtoC != OSQP_NULL) TtoC[k] = p; // Assign vector of indices |
| } |
| } |
| return csc_done(C, w, OSQP_NULL, 1); /* success; free w and return C */ |
| } |
| |
| c_int csc_cumsum(c_int *p, c_int *c, c_int n) { |
| c_int i, nz = 0; |
| |
| if (!p || !c) return -1; /* check inputs */ |
| |
| for (i = 0; i < n; i++) |
| { |
| p[i] = nz; |
| nz += c[i]; |
| c[i] = p[i]; |
| } |
| p[n] = nz; |
| return nz; /* return sum (c [0..n-1]) */ |
| } |
| |
| c_int* csc_pinv(c_int const *p, c_int n) { |
| c_int k, *pinv; |
| |
| if (!p) return OSQP_NULL; /* p = OSQP_NULL denotes identity */ |
| |
| pinv = csc_malloc(n, sizeof(c_int)); /* allocate result */ |
| |
| if (!pinv) return OSQP_NULL; /* out of memory */ |
| |
| for (k = 0; k < n; k++) pinv[p[k]] = k; /* invert the permutation */ |
| return pinv; /* return result */ |
| } |
| |
| csc* csc_symperm(const csc *A, const c_int *pinv, c_int *AtoC, c_int values) { |
| c_int i, j, p, q, i2, j2, n, *Ap, *Ai, *Cp, *Ci, *w; |
| c_float *Cx, *Ax; |
| csc *C; |
| |
| n = A->n; |
| Ap = A->p; |
| Ai = A->i; |
| Ax = A->x; |
| C = csc_spalloc(n, n, Ap[n], values && (Ax != OSQP_NULL), |
| 0); /* alloc result*/ |
| w = csc_calloc(n, sizeof(c_int)); /* get workspace */ |
| |
| if (!C || !w) return csc_done(C, w, OSQP_NULL, 0); /* out of memory */ |
| |
| Cp = C->p; |
| Ci = C->i; |
| Cx = C->x; |
| |
| for (j = 0; j < n; j++) /* count entries in each column of C */ |
| { |
| j2 = pinv ? pinv[j] : j; /* column j of A is column j2 of C */ |
| |
| for (p = Ap[j]; p < Ap[j + 1]; p++) { |
| i = Ai[p]; |
| |
| if (i > j) continue; /* skip lower triangular part of A */ |
| i2 = pinv ? pinv[i] : i; /* row i of A is row i2 of C */ |
| w[c_max(i2, j2)]++; /* column count of C */ |
| } |
| } |
| csc_cumsum(Cp, w, n); /* compute column pointers of C */ |
| |
| for (j = 0; j < n; j++) { |
| j2 = pinv ? pinv[j] : j; /* column j of A is column j2 of C */ |
| |
| for (p = Ap[j]; p < Ap[j + 1]; p++) { |
| i = Ai[p]; |
| |
| if (i > j) continue; /* skip lower triangular |
| part of A*/ |
| i2 = pinv ? pinv[i] : i; /* row i of A is row i2 |
| of C */ |
| Ci[q = w[c_max(i2, j2)]++] = c_min(i2, j2); |
| |
| if (Cx) Cx[q] = Ax[p]; |
| |
| if (AtoC) { // If vector AtoC passed, store values of the mappings |
| AtoC[p] = q; |
| } |
| } |
| } |
| return csc_done(C, w, OSQP_NULL, 1); /* success; free workspace, return C */ |
| } |
| |
| csc* copy_csc_mat(const csc *A) { |
| csc *B = csc_spalloc(A->m, A->n, A->p[A->n], 1, 0); |
| |
| if (!B) return OSQP_NULL; |
| |
| prea_int_vec_copy(A->p, B->p, A->n + 1); |
| prea_int_vec_copy(A->i, B->i, A->p[A->n]); |
| prea_vec_copy(A->x, B->x, A->p[A->n]); |
| |
| return B; |
| } |
| |
| void prea_copy_csc_mat(const csc *A, csc *B) { |
| prea_int_vec_copy(A->p, B->p, A->n + 1); |
| prea_int_vec_copy(A->i, B->i, A->p[A->n]); |
| prea_vec_copy(A->x, B->x, A->p[A->n]); |
| |
| B->nzmax = A->nzmax; |
| } |
| |
| csc* csc_done(csc *C, void *w, void *x, c_int ok) { |
| c_free(w); /* free workspace */ |
| c_free(x); |
| if (ok) return C; |
| else { |
| csc_spfree(C); |
| return OSQP_NULL; |
| } |
| } |
| |
| csc* csc_to_triu(csc *M) { |
| csc *M_trip; // Matrix in triplet format |
| csc *M_triu; // Resulting upper triangular matrix |
| c_int nnzorigM; // Number of nonzeros from original matrix M |
| c_int nnzmaxM; // Estimated maximum number of elements of upper triangular M |
| c_int n; // Dimension of M |
| c_int ptr, i, j; // Counters for (i,j) and index in M |
| c_int z_M = 0; // Counter for elements in M_trip |
| |
| |
| // Check if matrix is square |
| if (M->m != M->n) { |
| #ifdef PRINTING |
| c_eprint("Matrix M not square"); |
| #endif /* ifdef PRINTING */ |
| return OSQP_NULL; |
| } |
| n = M->n; |
| |
| // Get number of nonzeros full M |
| nnzorigM = M->p[n]; |
| |
| // Estimate nnzmaxM |
| // Number of nonzero elements in original M + diagonal part. |
| // -> Full matrix M as input: estimate is half the number of total elements + |
| // diagonal = .5 * (nnzorigM + n) |
| // -> Upper triangular matrix M as input: estimate is the number of total |
| // elements + diagonal = nnzorigM + n |
| // The maximum between the two is nnzorigM + n |
| nnzmaxM = nnzorigM + n; |
| |
| // OLD |
| // nnzmaxM = n*(n+1)/2; // Full upper triangular matrix (This version |
| // allocates too much memory!) |
| // nnzmaxM = .5 * (nnzorigM + n); // half of the total elements + diagonal |
| |
| // Allocate M_trip |
| M_trip = csc_spalloc(n, n, nnzmaxM, 1, 1); // Triplet format |
| |
| if (!M_trip) { |
| #ifdef PRINTING |
| c_eprint("Upper triangular matrix extraction failed (out of memory)"); |
| #endif /* ifdef PRINTING */ |
| return OSQP_NULL; |
| } |
| |
| // Fill M_trip with only elements in M which are in the upper triangular |
| for (j = 0; j < n; j++) { // Cycle over columns |
| for (ptr = M->p[j]; ptr < M->p[j + 1]; ptr++) { |
| // Get row index |
| i = M->i[ptr]; |
| |
| // Assign element only if in the upper triangular |
| if (i <= j) { |
| // c_print("\nM(%i, %i) = %.4f", M->i[ptr], j, M->x[ptr]); |
| |
| M_trip->i[z_M] = i; |
| M_trip->p[z_M] = j; |
| M_trip->x[z_M] = M->x[ptr]; |
| |
| // Increase counter for the number of elements |
| z_M++; |
| } |
| } |
| } |
| |
| // Set number of nonzeros |
| M_trip->nz = z_M; |
| |
| // Convert triplet matrix to csc format |
| M_triu = triplet_to_csc(M_trip, OSQP_NULL); |
| |
| // Assign number of nonzeros of full matrix to triu M |
| M_triu->nzmax = nnzmaxM; |
| |
| // Cleanup and return result |
| csc_spfree(M_trip); |
| |
| // Return matrix in triplet form |
| return M_triu; |
| } |