blob: a678ceb42b70e3b89324803fc9335de361583e2c [file] [log] [blame]
#include "cs.h"
static void* csc_malloc(c_int n, c_int size) {
return c_malloc(n * size);
}
static void* csc_calloc(c_int n, c_int size) {
return c_calloc(n, size);
}
csc* csc_matrix(c_int m, c_int n, c_int nzmax, c_float *x, c_int *i, c_int *p)
{
csc *M = (csc *)c_malloc(sizeof(csc));
if (!M) return OSQP_NULL;
M->m = m;
M->n = n;
M->nz = -1;
M->nzmax = nzmax;
M->x = x;
M->i = i;
M->p = p;
return M;
}
csc* csc_spalloc(c_int m, c_int n, c_int nzmax, c_int values, c_int triplet) {
csc *A = csc_calloc(1, sizeof(csc)); /* allocate the csc struct */
if (!A) return OSQP_NULL; /* out of memory */
A->m = m; /* define dimensions and nzmax */
A->n = n;
A->nzmax = nzmax = c_max(nzmax, 1);
A->nz = triplet ? 0 : -1; /* allocate triplet or comp.col */
A->p = csc_malloc(triplet ? nzmax : n + 1, sizeof(c_int));
A->i = csc_malloc(nzmax, sizeof(c_int));
A->x = values ? csc_malloc(nzmax, sizeof(c_float)) : OSQP_NULL;
if (!A->p || !A->i || (values && !A->x)){
csc_spfree(A);
return OSQP_NULL;
} else return A;
}
void csc_spfree(csc *A) {
if (A){
if (A->p) c_free(A->p);
if (A->i) c_free(A->i);
if (A->x) c_free(A->x);
c_free(A);
}
}
csc* triplet_to_csc(const csc *T, c_int *TtoC) {
c_int m, n, nz, p, k, *Cp, *Ci, *w, *Ti, *Tj;
c_float *Cx, *Tx;
csc *C;
m = T->m;
n = T->n;
Ti = T->i;
Tj = T->p;
Tx = T->x;
nz = T->nz;
C = csc_spalloc(m, n, nz, Tx != OSQP_NULL, 0); /* allocate result */
w = csc_calloc(n, sizeof(c_int)); /* get workspace */
if (!C || !w) return csc_done(C, w, OSQP_NULL, 0); /* out of memory */
Cp = C->p;
Ci = C->i;
Cx = C->x;
for (k = 0; k < nz; k++) w[Tj[k]]++; /* column counts */
csc_cumsum(Cp, w, n); /* column pointers */
for (k = 0; k < nz; k++) {
Ci[p = w[Tj[k]]++] = Ti[k]; /* A(i,j) is the pth entry in C */
if (Cx) {
Cx[p] = Tx[k];
if (TtoC != OSQP_NULL) TtoC[k] = p; // Assign vector of indices
}
}
return csc_done(C, w, OSQP_NULL, 1); /* success; free w and return C */
}
csc* triplet_to_csr(const csc *T, c_int *TtoC) {
c_int m, n, nz, p, k, *Cp, *Cj, *w, *Ti, *Tj;
c_float *Cx, *Tx;
csc *C;
m = T->m;
n = T->n;
Ti = T->i;
Tj = T->p;
Tx = T->x;
nz = T->nz;
C = csc_spalloc(m, n, nz, Tx != OSQP_NULL, 0); /* allocate result */
w = csc_calloc(m, sizeof(c_int)); /* get workspace */
if (!C || !w) return csc_done(C, w, OSQP_NULL, 0); /* out of memory */
Cp = C->p;
Cj = C->i;
Cx = C->x;
for (k = 0; k < nz; k++) w[Ti[k]]++; /* row counts */
csc_cumsum(Cp, w, m); /* row pointers */
for (k = 0; k < nz; k++) {
Cj[p = w[Ti[k]]++] = Tj[k]; /* A(i,j) is the pth entry in C */
if (Cx) {
Cx[p] = Tx[k];
if (TtoC != OSQP_NULL) TtoC[k] = p; // Assign vector of indices
}
}
return csc_done(C, w, OSQP_NULL, 1); /* success; free w and return C */
}
c_int csc_cumsum(c_int *p, c_int *c, c_int n) {
c_int i, nz = 0;
if (!p || !c) return -1; /* check inputs */
for (i = 0; i < n; i++)
{
p[i] = nz;
nz += c[i];
c[i] = p[i];
}
p[n] = nz;
return nz; /* return sum (c [0..n-1]) */
}
c_int* csc_pinv(c_int const *p, c_int n) {
c_int k, *pinv;
if (!p) return OSQP_NULL; /* p = OSQP_NULL denotes identity */
pinv = csc_malloc(n, sizeof(c_int)); /* allocate result */
if (!pinv) return OSQP_NULL; /* out of memory */
for (k = 0; k < n; k++) pinv[p[k]] = k; /* invert the permutation */
return pinv; /* return result */
}
csc* csc_symperm(const csc *A, const c_int *pinv, c_int *AtoC, c_int values) {
c_int i, j, p, q, i2, j2, n, *Ap, *Ai, *Cp, *Ci, *w;
c_float *Cx, *Ax;
csc *C;
n = A->n;
Ap = A->p;
Ai = A->i;
Ax = A->x;
C = csc_spalloc(n, n, Ap[n], values && (Ax != OSQP_NULL),
0); /* alloc result*/
w = csc_calloc(n, sizeof(c_int)); /* get workspace */
if (!C || !w) return csc_done(C, w, OSQP_NULL, 0); /* out of memory */
Cp = C->p;
Ci = C->i;
Cx = C->x;
for (j = 0; j < n; j++) /* count entries in each column of C */
{
j2 = pinv ? pinv[j] : j; /* column j of A is column j2 of C */
for (p = Ap[j]; p < Ap[j + 1]; p++) {
i = Ai[p];
if (i > j) continue; /* skip lower triangular part of A */
i2 = pinv ? pinv[i] : i; /* row i of A is row i2 of C */
w[c_max(i2, j2)]++; /* column count of C */
}
}
csc_cumsum(Cp, w, n); /* compute column pointers of C */
for (j = 0; j < n; j++) {
j2 = pinv ? pinv[j] : j; /* column j of A is column j2 of C */
for (p = Ap[j]; p < Ap[j + 1]; p++) {
i = Ai[p];
if (i > j) continue; /* skip lower triangular
part of A*/
i2 = pinv ? pinv[i] : i; /* row i of A is row i2
of C */
Ci[q = w[c_max(i2, j2)]++] = c_min(i2, j2);
if (Cx) Cx[q] = Ax[p];
if (AtoC) { // If vector AtoC passed, store values of the mappings
AtoC[p] = q;
}
}
}
return csc_done(C, w, OSQP_NULL, 1); /* success; free workspace, return C */
}
csc* copy_csc_mat(const csc *A) {
csc *B = csc_spalloc(A->m, A->n, A->p[A->n], 1, 0);
if (!B) return OSQP_NULL;
prea_int_vec_copy(A->p, B->p, A->n + 1);
prea_int_vec_copy(A->i, B->i, A->p[A->n]);
prea_vec_copy(A->x, B->x, A->p[A->n]);
return B;
}
void prea_copy_csc_mat(const csc *A, csc *B) {
prea_int_vec_copy(A->p, B->p, A->n + 1);
prea_int_vec_copy(A->i, B->i, A->p[A->n]);
prea_vec_copy(A->x, B->x, A->p[A->n]);
B->nzmax = A->nzmax;
}
csc* csc_done(csc *C, void *w, void *x, c_int ok) {
c_free(w); /* free workspace */
c_free(x);
if (ok) return C;
else {
csc_spfree(C);
return OSQP_NULL;
}
}
csc* csc_to_triu(csc *M) {
csc *M_trip; // Matrix in triplet format
csc *M_triu; // Resulting upper triangular matrix
c_int nnzorigM; // Number of nonzeros from original matrix M
c_int nnzmaxM; // Estimated maximum number of elements of upper triangular M
c_int n; // Dimension of M
c_int ptr, i, j; // Counters for (i,j) and index in M
c_int z_M = 0; // Counter for elements in M_trip
// Check if matrix is square
if (M->m != M->n) {
#ifdef PRINTING
c_eprint("Matrix M not square");
#endif /* ifdef PRINTING */
return OSQP_NULL;
}
n = M->n;
// Get number of nonzeros full M
nnzorigM = M->p[n];
// Estimate nnzmaxM
// Number of nonzero elements in original M + diagonal part.
// -> Full matrix M as input: estimate is half the number of total elements +
// diagonal = .5 * (nnzorigM + n)
// -> Upper triangular matrix M as input: estimate is the number of total
// elements + diagonal = nnzorigM + n
// The maximum between the two is nnzorigM + n
nnzmaxM = nnzorigM + n;
// OLD
// nnzmaxM = n*(n+1)/2; // Full upper triangular matrix (This version
// allocates too much memory!)
// nnzmaxM = .5 * (nnzorigM + n); // half of the total elements + diagonal
// Allocate M_trip
M_trip = csc_spalloc(n, n, nnzmaxM, 1, 1); // Triplet format
if (!M_trip) {
#ifdef PRINTING
c_eprint("Upper triangular matrix extraction failed (out of memory)");
#endif /* ifdef PRINTING */
return OSQP_NULL;
}
// Fill M_trip with only elements in M which are in the upper triangular
for (j = 0; j < n; j++) { // Cycle over columns
for (ptr = M->p[j]; ptr < M->p[j + 1]; ptr++) {
// Get row index
i = M->i[ptr];
// Assign element only if in the upper triangular
if (i <= j) {
// c_print("\nM(%i, %i) = %.4f", M->i[ptr], j, M->x[ptr]);
M_trip->i[z_M] = i;
M_trip->p[z_M] = j;
M_trip->x[z_M] = M->x[ptr];
// Increase counter for the number of elements
z_M++;
}
}
}
// Set number of nonzeros
M_trip->nz = z_M;
// Convert triplet matrix to csc format
M_triu = triplet_to_csc(M_trip, OSQP_NULL);
// Assign number of nonzeros of full matrix to triu M
M_triu->nzmax = nnzmaxM;
// Cleanup and return result
csc_spfree(M_trip);
// Return matrix in triplet form
return M_triu;
}