| #ifndef AOS_EVENTS_SIMULATED_EVENT_LOOP_H_ |
| #define AOS_EVENTS_SIMULATED_EVENT_LOOP_H_ |
| |
| #include <algorithm> |
| #include <functional> |
| #include <map> |
| #include <memory> |
| #include <string_view> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/container/btree_map.h" |
| #include "aos/events/event_loop.h" |
| #include "aos/events/event_scheduler.h" |
| #include "aos/events/simple_channel.h" |
| #include "aos/flatbuffer_merge.h" |
| #include "aos/flatbuffers.h" |
| #include "aos/ipc_lib/index.h" |
| #include "aos/uuid.h" |
| #include "glog/logging.h" |
| |
| namespace aos { |
| |
| // Class for simulated fetchers. |
| class SimulatedChannel; |
| |
| class NodeEventLoopFactory; |
| class SimulatedEventLoop; |
| namespace message_bridge { |
| class SimulatedMessageBridge; |
| } |
| |
| // There are 2 concepts needed to support multi-node simulations. |
| // 1) The node. This is implemented with NodeEventLoopFactory. |
| // 2) The "robot" which runs multiple nodes. This is implemented with |
| // SimulatedEventLoopFactory. |
| // |
| // To make things easier, SimulatedEventLoopFactory takes an optional Node |
| // argument if you want to make event loops without interacting with the |
| // NodeEventLoopFactory object. |
| // |
| // The basic flow goes something like as follows: |
| // |
| // SimulatedEventLoopFactory factory(config); |
| // const Node *pi1 = configuration::GetNode(factory.configuration(), "pi1"); |
| // std::unique_ptr<EventLoop> event_loop = factory.MakeEventLoop("ping", pi1); |
| // |
| // Or |
| // |
| // SimulatedEventLoopFactory factory(config); |
| // const Node *pi1 = configuration::GetNode(factory.configuration(), "pi1"); |
| // NodeEventLoopFactory *pi1_factory = factory.GetNodeEventLoopFactory(pi1); |
| // std::unique_ptr<EventLoop> event_loop = pi1_factory.MakeEventLoop("ping"); |
| // |
| // The distributed_clock is used to be the base time. NodeEventLoopFactory has |
| // all the information needed to adjust both the realtime and monotonic clocks |
| // relative to the distributed_clock. |
| class SimulatedEventLoopFactory { |
| public: |
| // Constructs a SimulatedEventLoopFactory with the provided configuration. |
| // This configuration must remain in scope for the lifetime of the factory and |
| // all sub-objects. |
| SimulatedEventLoopFactory(const Configuration *configuration); |
| ~SimulatedEventLoopFactory(); |
| |
| SimulatedEventLoopFactory(const SimulatedEventLoopFactory &) = delete; |
| SimulatedEventLoopFactory &operator=(const SimulatedEventLoopFactory &) = |
| delete; |
| SimulatedEventLoopFactory(SimulatedEventLoopFactory &&) = delete; |
| SimulatedEventLoopFactory &operator=(SimulatedEventLoopFactory &&) = delete; |
| |
| // Creates an event loop. If running in a multi-node environment, node needs |
| // to point to the node to create this event loop on. |
| ::std::unique_ptr<EventLoop> MakeEventLoop(std::string_view name, |
| const Node *node = nullptr); |
| |
| // Returns the NodeEventLoopFactory for the provided node. The returned |
| // NodeEventLoopFactory is owned by the SimulatedEventLoopFactory and has a |
| // lifetime identical to the factory. |
| NodeEventLoopFactory *GetNodeEventLoopFactory(const Node *node); |
| NodeEventLoopFactory *GetNodeEventLoopFactory(std::string_view node); |
| |
| // Sets the time converter for all nodes. |
| void SetTimeConverter(TimeConverter *time_converter); |
| |
| // Starts executing the event loops unconditionally until Exit is called or |
| // all the nodes have shut down. |
| void Run(); |
| // Executes the event loops for a duration. |
| void RunFor(distributed_clock::duration duration); |
| |
| // Stops executing all event loops. Meant to be called from within an event |
| // loop handler. |
| void Exit(); |
| |
| const std::vector<const Node *> &nodes() const { return nodes_; } |
| |
| // Sets the simulated send delay for all messages sent within a single node. |
| void set_send_delay(std::chrono::nanoseconds send_delay); |
| std::chrono::nanoseconds send_delay() const { return send_delay_; } |
| |
| // Sets the simulated network delay for messages forwarded between nodes. |
| void set_network_delay(std::chrono::nanoseconds network_delay) { |
| network_delay_ = network_delay; |
| } |
| std::chrono::nanoseconds network_delay() const { return network_delay_; } |
| |
| // Returns the clock used to synchronize the nodes. |
| distributed_clock::time_point distributed_now() const { |
| return scheduler_scheduler_.distributed_now(); |
| } |
| |
| // Returns the configuration used for everything. |
| const Configuration *configuration() const { return configuration_; } |
| |
| // Disables forwarding for this channel. This should be used very rarely only |
| // for things like the logger. |
| void DisableForwarding(const Channel *channel); |
| |
| // Disables the messages sent by the simulated message gateway. |
| void DisableStatistics(); |
| // Enables the messages sent by the simulated message gateway. |
| void EnableStatistics(); |
| |
| // Calls SkipTimingReport() on all EventLoops used as part of the |
| // infrastructure. This may improve the performance of long-simulated-duration |
| // tests. |
| void SkipTimingReport(); |
| |
| // Re-enables application creation for the duration of fn. This is mostly to |
| // allow use cases like log reading to create applications after the node |
| // starts up without stopping execution. |
| void AllowApplicationCreationDuring(std::function<void()> fn); |
| |
| private: |
| friend class NodeEventLoopFactory; |
| |
| const Configuration *const configuration_; |
| EventSchedulerScheduler scheduler_scheduler_; |
| |
| std::chrono::nanoseconds send_delay_ = std::chrono::microseconds(50); |
| std::chrono::nanoseconds network_delay_ = std::chrono::microseconds(100); |
| |
| std::unique_ptr<message_bridge::SimulatedMessageBridge> bridge_; |
| |
| std::vector<std::unique_ptr<NodeEventLoopFactory>> node_factories_; |
| |
| std::vector<const Node *> nodes_; |
| }; |
| |
| // This class holds all the state required to be a single node. |
| class NodeEventLoopFactory { |
| public: |
| ~NodeEventLoopFactory(); |
| |
| std::unique_ptr<EventLoop> MakeEventLoop(std::string_view name); |
| |
| // Returns the node that this factory is running as, or nullptr if this is a |
| // single node setup. |
| const Node *node() const { return node_; } |
| |
| // Sets realtime clock to realtime_now for a given monotonic clock. |
| void SetRealtimeOffset(monotonic_clock::time_point monotonic_now, |
| realtime_clock::time_point realtime_now) { |
| realtime_offset_ = |
| realtime_now.time_since_epoch() - monotonic_now.time_since_epoch(); |
| } |
| |
| // Returns the current time on both clocks. |
| inline monotonic_clock::time_point monotonic_now() const; |
| inline realtime_clock::time_point realtime_now() const; |
| inline distributed_clock::time_point distributed_now() const; |
| |
| const Configuration *configuration() const { |
| return factory_->configuration(); |
| } |
| |
| // Starts the node up by calling the OnStartup handlers. These get called |
| // every time a node is started. |
| |
| // Called when a node has started. This is typically when a log file starts |
| // for a node. |
| void OnStartup(std::function<void()> &&fn); |
| |
| // Called when a node shuts down. These get called every time a node is shut |
| // down. All applications are destroyed right after the last OnShutdown |
| // callback is called. |
| void OnShutdown(std::function<void()> &&fn); |
| |
| // Starts an application if the configuration says it should be started on |
| // this node. name is the name of the application. args are the constructor |
| // args for the Main class. Returns a pointer to the class that was started |
| // if it was started, or nullptr. |
| template <class Main, class... Args> |
| Main *MaybeStart(std::string_view name, Args &&... args); |
| |
| // Starts an application regardless of if the config says to or not. name is |
| // the name of the application, and args are the constructor args for the |
| // application. Returns a pointer to the class that was started. |
| template <class Main, class... Args> |
| Main *AlwaysStart(std::string_view name, Args &&... args); |
| |
| // Returns the simulated network delay for messages forwarded between nodes. |
| std::chrono::nanoseconds network_delay() const { |
| return factory_->network_delay(); |
| } |
| // Returns the simulated send delay for all messages sent within a single |
| // node. |
| std::chrono::nanoseconds send_delay() const { return factory_->send_delay(); } |
| |
| size_t boot_count() const { return scheduler_.boot_count(); } |
| |
| // TODO(austin): Private for the following? |
| |
| // Converts a time to the distributed clock for scheduling and cross-node time |
| // measurement. |
| // Note: converting time too far in the future can cause problems when |
| // replaying logs. Only convert times in the present or near past. |
| inline distributed_clock::time_point ToDistributedClock( |
| monotonic_clock::time_point time) const; |
| inline logger::BootTimestamp FromDistributedClock( |
| distributed_clock::time_point time) const; |
| |
| // Sets the class used to convert time. This pointer must out-live the |
| // SimulatedEventLoopFactory. |
| void SetTimeConverter(TimeConverter *time_converter) { |
| scheduler_.SetTimeConverter( |
| configuration::GetNodeIndex(factory_->configuration(), node_), |
| time_converter); |
| } |
| |
| // Returns the boot UUID for this node. |
| const UUID &boot_uuid() { |
| if (boot_uuid_ == UUID::Zero()) { |
| boot_uuid_ = scheduler_.boot_uuid(); |
| } |
| return boot_uuid_; |
| } |
| |
| // Stops forwarding messages to the other node, and reports disconnected in |
| // the ServerStatistics message for this node, and the ClientStatistics for |
| // the other node. |
| void Disconnect(const Node *other); |
| // Resumes forwarding messages. |
| void Connect(const Node *other); |
| |
| // Disables the messages sent by the simulated message gateway. |
| void DisableStatistics(); |
| // Enables the messages sent by the simulated message gateway. |
| void EnableStatistics(); |
| |
| private: |
| friend class SimulatedEventLoopFactory; |
| NodeEventLoopFactory(EventSchedulerScheduler *scheduler_scheduler, |
| SimulatedEventLoopFactory *factory, const Node *node); |
| |
| // Skips timing reports on all event loops on this node. |
| void SkipTimingReport(); |
| |
| // Helpers to restart. |
| void ScheduleStartup(); |
| void Startup(); |
| void Shutdown(); |
| |
| EventScheduler scheduler_; |
| SimulatedEventLoopFactory *const factory_; |
| |
| UUID boot_uuid_ = UUID::Zero(); |
| |
| const Node *const node_; |
| |
| bool skip_timing_report_ = false; |
| |
| std::vector<SimulatedEventLoop *> event_loops_; |
| |
| std::chrono::nanoseconds realtime_offset_ = std::chrono::seconds(0); |
| |
| // Map from name, type to queue. |
| absl::btree_map<SimpleChannel, std::unique_ptr<SimulatedChannel>> channels_; |
| |
| // pid so we get unique timing reports. |
| pid_t tid_ = 0; |
| |
| // True if we are started. |
| bool started_ = false; |
| |
| std::vector<std::function<void()>> pending_on_startup_; |
| std::vector<std::function<void()>> on_startup_; |
| std::vector<std::function<void()>> on_shutdown_; |
| |
| // Base class for an application to start. This shouldn't be used directly. |
| struct Application { |
| Application(NodeEventLoopFactory *node_factory, std::string_view name) |
| : event_loop(node_factory->MakeEventLoop(name)) {} |
| virtual ~Application() {} |
| |
| std::unique_ptr<EventLoop> event_loop; |
| }; |
| |
| // Subclass to do type erasure for the base class. Holds an instance of a |
| // specific class. Use SimulationStarter instead. |
| template <typename Main> |
| struct TypedApplication : public Application { |
| // Constructs an Application by delegating the arguments used to construct |
| // the event loop to Application and the rest of the args to the actual |
| // application. |
| template <class... Args> |
| TypedApplication(NodeEventLoopFactory *node_factory, std::string_view name, |
| Args &&... args) |
| : Application(node_factory, name), |
| main(event_loop.get(), std::forward<Args>(args)...) { |
| VLOG(1) << node_factory->scheduler_.distributed_now() << " " |
| << (node_factory->node() == nullptr |
| ? "" |
| : node_factory->node()->name()->str() + " ") |
| << node_factory->monotonic_now() << " Starting Application \"" |
| << name << "\""; |
| } |
| ~TypedApplication() override {} |
| |
| Main main; |
| }; |
| |
| std::vector<std::unique_ptr<Application>> applications_; |
| }; |
| |
| template <class Main, class... Args> |
| Main *NodeEventLoopFactory::MaybeStart(std::string_view name, Args &&... args) { |
| const aos::Application *application = |
| configuration::GetApplication(configuration(), node(), name); |
| |
| if (application != nullptr) { |
| return AlwaysStart<Main>(name, std::forward<Args>(args)...); |
| } |
| return nullptr; |
| } |
| |
| template <class Main, class... Args> |
| Main *NodeEventLoopFactory::AlwaysStart(std::string_view name, |
| Args &&... args) { |
| std::unique_ptr<TypedApplication<Main>> app = |
| std::make_unique<TypedApplication<Main>>(this, name, |
| std::forward<Args>(args)...); |
| Main *main_ptr = &app->main; |
| applications_.emplace_back(std::move(app)); |
| return main_ptr; |
| } |
| |
| inline monotonic_clock::time_point NodeEventLoopFactory::monotonic_now() const { |
| // TODO(austin): Confirm that time never goes backwards? |
| return scheduler_.monotonic_now(); |
| } |
| |
| inline realtime_clock::time_point NodeEventLoopFactory::realtime_now() const { |
| return realtime_clock::time_point(monotonic_now().time_since_epoch() + |
| realtime_offset_); |
| } |
| |
| inline distributed_clock::time_point NodeEventLoopFactory::distributed_now() |
| const { |
| return scheduler_.distributed_now(); |
| } |
| |
| inline logger::BootTimestamp NodeEventLoopFactory::FromDistributedClock( |
| distributed_clock::time_point time) const { |
| return scheduler_.FromDistributedClock(time); |
| } |
| |
| inline distributed_clock::time_point NodeEventLoopFactory::ToDistributedClock( |
| monotonic_clock::time_point time) const { |
| return scheduler_.ToDistributedClock(time); |
| } |
| |
| } // namespace aos |
| |
| #endif // AOS_EVENTS_SIMULATED_EVENT_LOOP_H_ |