blob: bcbbd55802644a283814517c4962cd101f4adba4 [file] [log] [blame]
// Copyright (c) FIRST and other WPILib contributors.
// Open Source Software; you can modify and/or share it under the terms of
// the WPILib BSD license file in the root directory of this project.
#include "frc/PneumaticHub.h"
#include <array>
#include <fmt/format.h>
#include <hal/REVPH.h>
#include <wpi/NullDeleter.h>
#include <wpi/StackTrace.h>
#include "frc/Compressor.h"
#include "frc/DoubleSolenoid.h"
#include "frc/Errors.h"
#include "frc/RobotBase.h"
#include "frc/SensorUtil.h"
#include "frc/Solenoid.h"
using namespace frc;
/** Converts volts to PSI per the REV Analog Pressure Sensor datasheet. */
units::pounds_per_square_inch_t VoltsToPSI(units::volt_t sensorVoltage,
units::volt_t supplyVoltage) {
auto pressure = 250 * (sensorVoltage.value() / supplyVoltage.value()) - 25;
return units::pounds_per_square_inch_t{pressure};
}
/** Converts PSI to volts per the REV Analog Pressure Sensor datasheet. */
units::volt_t PSIToVolts(units::pounds_per_square_inch_t pressure,
units::volt_t supplyVoltage) {
auto voltage = supplyVoltage.value() * (0.004 * pressure.value() + 0.1);
return units::volt_t{voltage};
}
wpi::mutex PneumaticHub::m_handleLock;
std::unique_ptr<wpi::DenseMap<int, std::weak_ptr<PneumaticHub::DataStore>>>
PneumaticHub::m_handleMap = nullptr;
// Always called under lock, so we can avoid the double lock from the magic
// static
std::weak_ptr<PneumaticHub::DataStore>& PneumaticHub::GetDataStore(int module) {
if (!m_handleMap) {
m_handleMap = std::make_unique<
wpi::DenseMap<int, std::weak_ptr<PneumaticHub::DataStore>>>();
}
return (*m_handleMap)[module];
}
class PneumaticHub::DataStore {
public:
explicit DataStore(int module, const char* stackTrace) {
int32_t status = 0;
HAL_REVPHHandle handle = HAL_InitializeREVPH(module, stackTrace, &status);
FRC_CheckErrorStatus(status, "Module {}", module);
m_moduleObject = PneumaticHub{handle, module};
m_moduleObject.m_dataStore =
std::shared_ptr<DataStore>{this, wpi::NullDeleter<DataStore>()};
auto version = m_moduleObject.GetVersion();
if (version.FirmwareMajor > 0 && RobotBase::IsReal()) {
// Write PH firmware version to roboRIO
std::FILE* file = nullptr;
file = std::fopen(
fmt::format("/tmp/frc_versions/REV_PH_{:0>2}_WPILib_Version.ini",
module)
.c_str(),
"w");
if (file != nullptr) {
std::fputs("[Version]\n", file);
std::fputs(fmt::format("model=REV PH\n").c_str(), file);
std::fputs(fmt::format("deviceID={:x}\n", (0x9052600 | module)).c_str(),
file);
std::fputs(fmt::format("currentVersion={}.{}.{}", version.FirmwareMajor,
version.FirmwareMinor, version.FirmwareFix)
.c_str(),
file);
std::fclose(file);
}
}
// Check PH firmware version
if (version.FirmwareMajor > 0 && version.FirmwareMajor < 22) {
throw FRC_MakeError(
err::AssertionFailure,
"The Pneumatic Hub has firmware version {}.{}.{}, and must be "
"updated to version 2022.0.0 or later using the REV Hardware Client",
version.FirmwareMajor, version.FirmwareMinor, version.FirmwareFix);
}
}
~DataStore() noexcept { HAL_FreeREVPH(m_moduleObject.m_handle); }
DataStore(DataStore&&) = delete;
DataStore& operator=(DataStore&&) = delete;
private:
friend class PneumaticHub;
uint32_t m_reservedMask{0};
bool m_compressorReserved{false};
wpi::mutex m_reservedLock;
PneumaticHub m_moduleObject{HAL_kInvalidHandle, 0};
std::array<units::millisecond_t, 16> m_oneShotDurMs{0_ms};
};
PneumaticHub::PneumaticHub()
: PneumaticHub{SensorUtil::GetDefaultREVPHModule()} {}
PneumaticHub::PneumaticHub(int module) {
std::string stackTrace = wpi::GetStackTrace(1);
std::scoped_lock lock(m_handleLock);
auto& res = GetDataStore(module);
m_dataStore = res.lock();
if (!m_dataStore) {
m_dataStore = std::make_shared<DataStore>(module, stackTrace.c_str());
res = m_dataStore;
}
m_handle = m_dataStore->m_moduleObject.m_handle;
m_module = module;
}
PneumaticHub::PneumaticHub(HAL_REVPHHandle handle, int module)
: m_handle{handle}, m_module{module} {}
bool PneumaticHub::GetCompressor() const {
int32_t status = 0;
auto result = HAL_GetREVPHCompressor(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return result;
}
void PneumaticHub::DisableCompressor() {
int32_t status = 0;
HAL_SetREVPHClosedLoopControlDisabled(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
}
void PneumaticHub::EnableCompressorDigital() {
int32_t status = 0;
HAL_SetREVPHClosedLoopControlDigital(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
}
void PneumaticHub::EnableCompressorAnalog(
units::pounds_per_square_inch_t minPressure,
units::pounds_per_square_inch_t maxPressure) {
if (minPressure >= maxPressure) {
throw FRC_MakeError(err::InvalidParameter,
"maxPressure must be greater than minPresure");
}
if (minPressure < 0_psi || minPressure > 120_psi) {
throw FRC_MakeError(err::ParameterOutOfRange,
"minPressure must be between 0 and 120 PSI, got {}",
minPressure);
}
if (maxPressure < 0_psi || maxPressure > 120_psi) {
throw FRC_MakeError(err::ParameterOutOfRange,
"maxPressure must be between 0 and 120 PSI, got {}",
maxPressure);
}
// Send the voltage as it would be if the 5V rail was at exactly 5V.
// The firmware will compensate for the real 5V rail voltage, which
// can fluctuate somewhat over time.
units::volt_t minAnalogVoltage = PSIToVolts(minPressure, 5_V);
units::volt_t maxAnalogVoltage = PSIToVolts(maxPressure, 5_V);
int32_t status = 0;
HAL_SetREVPHClosedLoopControlAnalog(m_handle, minAnalogVoltage.value(),
maxAnalogVoltage.value(), &status);
FRC_ReportError(status, "Module {}", m_module);
}
void PneumaticHub::EnableCompressorHybrid(
units::pounds_per_square_inch_t minPressure,
units::pounds_per_square_inch_t maxPressure) {
if (minPressure >= maxPressure) {
throw FRC_MakeError(err::InvalidParameter,
"maxPressure must be greater than minPresure");
}
if (minPressure < 0_psi || minPressure > 120_psi) {
throw FRC_MakeError(err::ParameterOutOfRange,
"minPressure must be between 0 and 120 PSI, got {}",
minPressure);
}
if (maxPressure < 0_psi || maxPressure > 120_psi) {
throw FRC_MakeError(err::ParameterOutOfRange,
"maxPressure must be between 0 and 120 PSI, got {}",
maxPressure);
}
// Send the voltage as it would be if the 5V rail was at exactly 5V.
// The firmware will compensate for the real 5V rail voltage, which
// can fluctuate somewhat over time.
units::volt_t minAnalogVoltage = PSIToVolts(minPressure, 5_V);
units::volt_t maxAnalogVoltage = PSIToVolts(maxPressure, 5_V);
int32_t status = 0;
HAL_SetREVPHClosedLoopControlHybrid(m_handle, minAnalogVoltage.value(),
maxAnalogVoltage.value(), &status);
FRC_ReportError(status, "Module {}", m_module);
}
CompressorConfigType PneumaticHub::GetCompressorConfigType() const {
int32_t status = 0;
auto result = HAL_GetREVPHCompressorConfig(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return static_cast<CompressorConfigType>(result);
}
bool PneumaticHub::GetPressureSwitch() const {
int32_t status = 0;
auto result = HAL_GetREVPHPressureSwitch(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return result;
}
units::ampere_t PneumaticHub::GetCompressorCurrent() const {
int32_t status = 0;
auto result = HAL_GetREVPHCompressorCurrent(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return units::ampere_t{result};
}
void PneumaticHub::SetSolenoids(int mask, int values) {
int32_t status = 0;
HAL_SetREVPHSolenoids(m_handle, mask, values, &status);
FRC_ReportError(status, "Module {}", m_module);
}
int PneumaticHub::GetSolenoids() const {
int32_t status = 0;
auto result = HAL_GetREVPHSolenoids(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return result;
}
int PneumaticHub::GetModuleNumber() const {
return m_module;
}
int PneumaticHub::GetSolenoidDisabledList() const {
int32_t status = 0;
HAL_REVPHStickyFaults faults;
std::memset(&faults, 0, sizeof(faults));
HAL_GetREVPHStickyFaults(m_handle, &faults, &status);
FRC_ReportError(status, "Module {}", m_module);
uint32_t intFaults = 0;
static_assert(sizeof(faults) == sizeof(intFaults));
std::memcpy(&intFaults, &faults, sizeof(faults));
return intFaults & 0xFFFF;
}
void PneumaticHub::FireOneShot(int index) {
int32_t status = 0;
HAL_FireREVPHOneShot(m_handle, index,
m_dataStore->m_oneShotDurMs[index].value(), &status);
FRC_ReportError(status, "Module {}", m_module);
}
void PneumaticHub::SetOneShotDuration(int index, units::second_t duration) {
m_dataStore->m_oneShotDurMs[index] = duration;
}
bool PneumaticHub::CheckSolenoidChannel(int channel) const {
return HAL_CheckREVPHSolenoidChannel(channel);
}
int PneumaticHub::CheckAndReserveSolenoids(int mask) {
std::scoped_lock lock{m_dataStore->m_reservedLock};
uint32_t uMask = static_cast<uint32_t>(mask);
if ((m_dataStore->m_reservedMask & uMask) != 0) {
return m_dataStore->m_reservedMask & uMask;
}
m_dataStore->m_reservedMask |= uMask;
return 0;
}
void PneumaticHub::UnreserveSolenoids(int mask) {
std::scoped_lock lock{m_dataStore->m_reservedLock};
m_dataStore->m_reservedMask &= ~(static_cast<uint32_t>(mask));
}
bool PneumaticHub::ReserveCompressor() {
std::scoped_lock lock{m_dataStore->m_reservedLock};
if (m_dataStore->m_compressorReserved) {
return false;
}
m_dataStore->m_compressorReserved = true;
return true;
}
void PneumaticHub::UnreserveCompressor() {
std::scoped_lock lock{m_dataStore->m_reservedLock};
m_dataStore->m_compressorReserved = false;
}
PneumaticHub::Version PneumaticHub::GetVersion() const {
int32_t status = 0;
HAL_REVPHVersion halVersions;
std::memset(&halVersions, 0, sizeof(halVersions));
HAL_GetREVPHVersion(m_handle, &halVersions, &status);
FRC_ReportError(status, "Module {}", m_module);
PneumaticHub::Version versions;
static_assert(sizeof(halVersions) == sizeof(versions));
static_assert(std::is_standard_layout_v<decltype(versions)>);
static_assert(std::is_trivial_v<decltype(versions)>);
std::memcpy(&versions, &halVersions, sizeof(versions));
return versions;
}
PneumaticHub::Faults PneumaticHub::GetFaults() const {
int32_t status = 0;
HAL_REVPHFaults halFaults;
std::memset(&halFaults, 0, sizeof(halFaults));
HAL_GetREVPHFaults(m_handle, &halFaults, &status);
FRC_ReportError(status, "Module {}", m_module);
PneumaticHub::Faults faults;
static_assert(sizeof(halFaults) == sizeof(faults));
static_assert(std::is_standard_layout_v<decltype(faults)>);
static_assert(std::is_trivial_v<decltype(faults)>);
std::memcpy(&faults, &halFaults, sizeof(faults));
return faults;
}
PneumaticHub::StickyFaults PneumaticHub::GetStickyFaults() const {
int32_t status = 0;
HAL_REVPHStickyFaults halStickyFaults;
std::memset(&halStickyFaults, 0, sizeof(halStickyFaults));
HAL_GetREVPHStickyFaults(m_handle, &halStickyFaults, &status);
FRC_ReportError(status, "Module {}", m_module);
PneumaticHub::StickyFaults stickyFaults;
static_assert(sizeof(halStickyFaults) == sizeof(stickyFaults));
static_assert(std::is_standard_layout_v<decltype(stickyFaults)>);
static_assert(std::is_trivial_v<decltype(stickyFaults)>);
std::memcpy(&stickyFaults, &halStickyFaults, sizeof(stickyFaults));
return stickyFaults;
}
void PneumaticHub::ClearStickyFaults() {
int32_t status = 0;
HAL_ClearREVPHStickyFaults(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
}
units::volt_t PneumaticHub::GetInputVoltage() const {
int32_t status = 0;
auto voltage = HAL_GetREVPHVoltage(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return units::volt_t{voltage};
}
units::volt_t PneumaticHub::Get5VRegulatedVoltage() const {
int32_t status = 0;
auto voltage = HAL_GetREVPH5VVoltage(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return units::volt_t{voltage};
}
units::ampere_t PneumaticHub::GetSolenoidsTotalCurrent() const {
int32_t status = 0;
auto current = HAL_GetREVPHSolenoidCurrent(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return units::ampere_t{current};
}
units::volt_t PneumaticHub::GetSolenoidsVoltage() const {
int32_t status = 0;
auto voltage = HAL_GetREVPHSolenoidVoltage(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return units::volt_t{voltage};
}
units::volt_t PneumaticHub::GetAnalogVoltage(int channel) const {
int32_t status = 0;
auto voltage = HAL_GetREVPHAnalogVoltage(m_handle, channel, &status);
FRC_ReportError(status, "Module {}", m_module);
return units::volt_t{voltage};
}
units::pounds_per_square_inch_t PneumaticHub::GetPressure(int channel) const {
int32_t status = 0;
auto sensorVoltage = HAL_GetREVPHAnalogVoltage(m_handle, channel, &status);
FRC_ReportError(status, "Module {}", m_module);
auto supplyVoltage = HAL_GetREVPH5VVoltage(m_handle, &status);
FRC_ReportError(status, "Module {}", m_module);
return VoltsToPSI(units::volt_t{sensorVoltage}, units::volt_t{supplyVoltage});
}
Solenoid PneumaticHub::MakeSolenoid(int channel) {
return Solenoid{m_module, PneumaticsModuleType::REVPH, channel};
}
DoubleSolenoid PneumaticHub::MakeDoubleSolenoid(int forwardChannel,
int reverseChannel) {
return DoubleSolenoid{m_module, PneumaticsModuleType::REVPH, forwardChannel,
reverseChannel};
}
Compressor PneumaticHub::MakeCompressor() {
return Compressor{m_module, PneumaticsModuleType::REVPH};
}
std::shared_ptr<PneumaticsBase> PneumaticHub::GetForModule(int module) {
std::string stackTrace = wpi::GetStackTrace(1);
std::scoped_lock lock(m_handleLock);
auto& res = GetDataStore(module);
std::shared_ptr<DataStore> dataStore = res.lock();
if (!dataStore) {
dataStore = std::make_shared<DataStore>(module, stackTrace.c_str());
res = dataStore;
}
return std::shared_ptr<PneumaticsBase>{dataStore, &dataStore->m_moduleObject};
}