blob: 287c5b00939035d89585588932a2fb2e2af12948 [file] [log] [blame]
#!/usr/bin/python3
from __future__ import print_function
# matplotlib overrides fontconfig locations, so it needs to be imported before gtk.
import matplotlib.pyplot as plt
import os
from frc971.control_loops.python import basic_window
from frc971.control_loops.python.color import Color, palette
import random
import gi
import numpy as np
gi.require_version('Gtk', '3.0')
from gi.repository import Gdk, Gtk
import cairo
from y2023.control_loops.python.graph_tools import to_theta, to_xy, alpha_blend, shift_angles, get_xy
from y2023.control_loops.python.graph_tools import l1, l2, joint_center
from y2023.control_loops.python.graph_tools import DRIVER_CAM_POINTS
from y2023.control_loops.python import graph_paths
from frc971.control_loops.python.basic_window import quit_main_loop, set_color, OverrideMatrix, identity
import shapely
from shapely.geometry import Polygon
def px(cr):
return OverrideMatrix(cr, identity)
# Draw lines to cr + stroke.
def draw_lines(cr, lines):
cr.move_to(lines[0][0], lines[0][1])
for pt in lines[1:]:
cr.line_to(pt[0], pt[1])
with px(cr):
cr.stroke()
def draw_px_cross(cr, length_px):
"""Draws a cross with fixed dimensions in pixel space."""
with px(cr):
x, y = cr.get_current_point()
cr.move_to(x, y - length_px)
cr.line_to(x, y + length_px)
cr.stroke()
cr.move_to(x - length_px, y)
cr.line_to(x + length_px, y)
cr.stroke()
def angle_dist_sqr(a1, a2):
"""Distance between two points in angle space."""
return (a1[0] - a2[0])**2 + (a1[1] - a2[1])**2
# Find the highest y position that intersects the vertical line defined by x.
def inter_y(x):
return np.sqrt((l2 + l1)**2 - (x - joint_center[0])**2) + joint_center[1]
# Define min and max l1 angles based on vertical constraints.
def get_angle(boundary):
h = np.sqrt((l1)**2 - (boundary - joint_center[0])**2) + joint_center[1]
return np.arctan2(h, boundary - joint_center[0])
# Rotate a rasterized loop such that it aligns to when the parameters loop
def rotate_to_jump_point(points):
last_pt = points[0]
for pt_i in range(1, len(points)):
pt = points[pt_i]
delta = last_pt[1] - pt[1]
if abs(delta) > np.pi:
return points[pt_i:] + points[:pt_i]
last_pt = pt
return points
# shift points vertically by dy.
def y_shift(points, dy):
return [(x, y + dy) for x, y in points]
# Get the closest point to a line from a test pt.
def get_closest(prev, cur, pt):
dx_ang = (cur[0] - prev[0])
dy_ang = (cur[1] - prev[1])
d = np.sqrt(dx_ang**2 + dy_ang**2)
if (d < 0.000001):
return prev, np.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
pdx = -dy_ang / d
pdy = dx_ang / d
dpx = pt[0] - prev[0]
dpy = pt[1] - prev[1]
alpha = (dx_ang * dpx + dy_ang * dpy) / d / d
if (alpha < 0):
return prev, np.sqrt((prev[0] - pt[0])**2 + (prev[1] - pt[1])**2)
elif (alpha > 1):
return cur, np.sqrt((cur[0] - pt[0])**2 + (cur[1] - pt[1])**2)
else:
return (alpha_blend(prev[0], cur[0], alpha), alpha_blend(prev[1], cur[1], alpha)), \
abs(dpx * pdx + dpy * pdy)
def closest_segment(lines, pt):
c_pt, c_pt_dist = get_closest(lines[-1], lines[0], pt)
for i in range(1, len(lines)):
prev = lines[i - 1]
cur = lines[i]
c_pt_new, c_pt_new_dist = get_closest(prev, cur, pt)
if c_pt_new_dist < c_pt_dist:
c_pt = c_pt_new
c_pt_dist = c_pt_new_dist
return c_pt, c_pt_dist
# Defining outline of robot
class RobotOutline():
def __init__(self, drivetrain_pos, drivetrain_width, joint_center_radius,
joint_tower_pos, joint_tower_width, joint_tower_height,
driver_cam_pos, driver_cam_width, driver_cam_height):
self.drivetrain_pos = drivetrain_pos
self.drivetrain_width = drivetrain_width
self.joint_center_radius = joint_center_radius
self.joint_tower_pos = joint_tower_pos
self.joint_tower_width = joint_tower_width
self.joint_tower_height = joint_tower_height
self.driver_cam_pos = driver_cam_pos
self.driver_cam_width = driver_cam_width
self.driver_cam_height = driver_cam_height
def draw(self, cr):
set_color(cr, palette["BLUE"])
cr.move_to(self.drivetrain_pos[0], self.drivetrain_pos[1])
cr.line_to(self.drivetrain_pos[0] + self.drivetrain_width,
self.drivetrain_pos[1])
with px(cr):
cr.stroke()
# Draw joint center
cr.arc(joint_center[0], joint_center[1], self.joint_center_radius, 0,
2.0 * np.pi)
with px(cr):
cr.stroke()
# Draw joint tower
cr.rectangle(self.joint_tower_pos[0], self.joint_tower_pos[1],
self.joint_tower_width, self.joint_tower_height)
with px(cr):
cr.stroke()
# Draw driver cam
cr.set_source_rgba(1, 0, 0, 0.5)
cr.rectangle(self.driver_cam_pos[0], self.driver_cam_pos[1],
self.driver_cam_width, self.driver_cam_height)
with px(cr):
cr.fill()
def draw_theta(self, cr):
# TOOD(Max): add theta mode drawing
pass
DRIVETRAIN_X = -0.490
DRIVETRAIN_Y = 0.184
DRIVETRAIN_WIDTH = 0.980
JOINT_CENTER_RADIUS = 0.173 / 2
JOINT_TOWER_X = -0.252
JOINT_TOWER_Y = DRIVETRAIN_Y
JOINT_TOWER_WIDTH = 0.098
JOINT_TOWER_HEIGHT = 0.864
DRIVER_CAM_X = DRIVER_CAM_POINTS[0][0]
DRIVER_CAM_Y = DRIVER_CAM_POINTS[0][1]
DRIVER_CAM_WIDTH = DRIVER_CAM_POINTS[-1][0] - DRIVER_CAM_POINTS[0][0]
DRIVER_CAM_HEIGHT = DRIVER_CAM_POINTS[-1][1] - DRIVER_CAM_POINTS[0][1]
class SegmentSelector(basic_window.BaseWindow):
def __init__(self, segments):
super(SegmentSelector, self).__init__()
self.window = Gtk.Window()
self.window.set_title("Segment Selector")
self.segments = segments
self.segment_store = Gtk.ListStore(int, str)
for i, segment in enumerate(segments):
self.segment_store.append([i, segment.name])
self.segment_box = Gtk.ComboBox.new_with_model_and_entry(
self.segment_store)
self.segment_box.connect("changed", self.on_combo_changed)
self.segment_box.set_entry_text_column(1)
self.current_path_index = None
self.window.add(self.segment_box)
self.window.show_all()
def on_combo_changed(self, combo):
iter = combo.get_active_iter()
if iter is not None:
model = combo.get_model()
id, name = model[iter][:2]
print("Selected: ID=%d, name=%s" % (id, name))
self.current_path_index = id
# Create a GTK+ widget on which we will draw using Cairo
class ArmUi(basic_window.BaseWindow):
def __init__(self, segments):
super(ArmUi, self).__init__()
self.window = Gtk.Window()
self.window.set_title("DrawingArea")
self.window.set_events(Gdk.EventMask.BUTTON_PRESS_MASK
| Gdk.EventMask.BUTTON_RELEASE_MASK
| Gdk.EventMask.POINTER_MOTION_MASK
| Gdk.EventMask.SCROLL_MASK
| Gdk.EventMask.KEY_PRESS_MASK)
self.method_connect("key-press-event", self.do_key_press)
self.method_connect("motion-notify-event", self.do_motion)
self.method_connect("button-press-event",
self._do_button_press_internal)
self.method_connect("configure-event", self._do_configure)
self.window.add(self)
self.window.show_all()
self.theta_version = False
self.reinit_extents()
self.last_pos = to_xy(*graph_paths.points['Neutral'][:2])
self.circular_index_select = 1
# Extra stuff for drawing lines.
self.segments = segments
self.prev_segment_pt = None
self.now_segment_pt = None
self.spline_edit = 0
self.edit_control1 = True
self.joint_thetas = None
self.joint_points = None
self.fig = plt.figure()
self.axes = [
self.fig.add_subplot(3, 1, 1),
self.fig.add_subplot(3, 1, 2),
self.fig.add_subplot(3, 1, 3)
]
self.fig.subplots_adjust(hspace=1.0)
plt.show(block=False)
self.index = 0
self.outline = RobotOutline([DRIVETRAIN_X, DRIVETRAIN_Y],
DRIVETRAIN_WIDTH, JOINT_CENTER_RADIUS,
[JOINT_TOWER_X, JOINT_TOWER_Y],
JOINT_TOWER_WIDTH, JOINT_TOWER_HEIGHT,
[DRIVER_CAM_X, DRIVER_CAM_Y],
DRIVER_CAM_WIDTH, DRIVER_CAM_HEIGHT)
self.segment_selector = SegmentSelector(self.segments)
self.segment_selector.show()
def _do_button_press_internal(self, event):
o_x = event.x
o_y = event.y
x = event.x - self.window_shape[0] / 2
y = self.window_shape[1] / 2 - event.y
scale = self.get_current_scale()
event.x = x / scale + self.center[0]
event.y = y / scale + self.center[1]
self.do_button_press(event)
event.x = o_x
event.y = o_y
def _do_configure(self, event):
self.window_shape = (event.width, event.height)
def redraw(self):
if not self.needs_redraw:
self.needs_redraw = True
self.window.queue_draw()
def method_connect(self, event, cb):
def handler(obj, *args):
cb(*args)
self.window.connect(event, handler)
def reinit_extents(self):
if self.theta_version:
self.extents_x_min = -np.pi * 2
self.extents_x_max = np.pi * 2
self.extents_y_min = -np.pi * 2
self.extents_y_max = np.pi * 2
else:
self.extents_x_min = -40.0 * 0.0254
self.extents_x_max = 40.0 * 0.0254
self.extents_y_min = -4.0 * 0.0254
self.extents_y_max = 110.0 * 0.0254
self.init_extents(
(0.5 * (self.extents_x_min + self.extents_x_max), 0.5 *
(self.extents_y_max + self.extents_y_min)),
(1.0 * (self.extents_x_max - self.extents_x_min), 1.0 *
(self.extents_y_max - self.extents_y_min)))
# Handle the expose-event by drawing
def handle_draw(self, cr):
# use "with px(cr): blah;" to transform to pixel coordinates.
if self.segment_selector.current_path_index is not None:
self.index = self.segment_selector.current_path_index
# Fill the background color of the window with grey
set_color(cr, palette["GREY"])
cr.paint()
# Draw a extents rectangle
set_color(cr, palette["WHITE"])
cr.rectangle(self.extents_x_min, self.extents_y_min,
(self.extents_x_max - self.extents_x_min),
self.extents_y_max - self.extents_y_min)
cr.fill()
if self.theta_version:
# Draw a filled white rectangle.
set_color(cr, palette["WHITE"])
cr.rectangle(-np.pi, -np.pi, np.pi * 2.0, np.pi * 2.0)
cr.fill()
set_color(cr, palette["BLUE"])
for i in range(-6, 6):
cr.move_to(-40, -40 + i * np.pi)
cr.line_to(40, 40 + i * np.pi)
with px(cr):
cr.stroke()
set_color(cr, Color(0.0, 1.0, 0.2))
cr.move_to(self.last_pos[0], self.last_pos[1])
draw_px_cross(cr, 5)
else:
# Draw a filled white rectangle.
set_color(cr, palette["WHITE"])
cr.rectangle(-2.0, -2.0, 4.0, 4.0)
cr.fill()
self.outline.draw(cr)
# Draw max radius
set_color(cr, palette["BLUE"])
cr.arc(joint_center[0], joint_center[1], l2 + l1, 0, 2.0 * np.pi)
with px(cr):
cr.stroke()
cr.arc(joint_center[0], joint_center[1], l1 - l2, 0, 2.0 * np.pi)
with px(cr):
cr.stroke()
set_color(cr, Color(0.5, 1.0, 1))
if not self.theta_version:
theta1, theta2 = to_theta(self.last_pos,
self.circular_index_select)
x, y = joint_center[0], joint_center[1]
cr.move_to(x, y)
x += np.cos(theta1) * l1
y += np.sin(theta1) * l1
cr.line_to(x, y)
x += np.cos(theta2) * l2
y += np.sin(theta2) * l2
cr.line_to(x, y)
with px(cr):
cr.stroke()
cr.move_to(self.last_pos[0], self.last_pos[1])
set_color(cr, Color(0.0, 1.0, 0.2))
draw_px_cross(cr, 20)
if self.theta_version:
set_color(cr, Color(0.0, 1.0, 0.2))
cr.move_to(self.last_pos[0], self.last_pos[1])
draw_px_cross(cr, 5)
self.outline.draw_theta(cr)
set_color(cr, Color(0.0, 0.5, 1.0))
for i in range(len(self.segments)):
color = None
if i == self.index:
continue
color = [0, random.random(), 1]
random.shuffle(color)
set_color(cr, Color(color[0], color[1], color[2]))
self.segments[i].DrawTo(cr, self.theta_version)
with px(cr):
cr.stroke()
# Draw current spline in black
color = [0, 0, 0]
set_color(cr, Color(color[0], color[1], color[2]))
self.segments[self.index].DrawTo(cr, self.theta_version)
control1 = get_xy(self.segments[self.index].control1)
control2 = get_xy(self.segments[self.index].control2)
if self.theta_version:
control1 = shift_angles(self.segments[self.index].control1)
control2 = shift_angles(self.segments[self.index].control2)
cr.move_to(control1[0] + 0.02, control1[1])
cr.arc(control1[0], control1[1], 0.02, 0, 2.0 * np.pi)
cr.move_to(control2[0] + 0.02, control2[1])
cr.arc(control2[0], control2[1], 0.02, 0, 2.0 * np.pi)
with px(cr):
cr.stroke()
set_color(cr, Color(0.0, 1.0, 0.5))
# Create the plots
if self.joint_thetas:
if self.joint_points:
titles = ["Proximal", "Distal", "Roll joint"]
for i in range(len(self.joint_points)):
self.axes[i].clear()
self.axes[i].plot(self.joint_thetas[0],
self.joint_thetas[1][i])
self.axes[i].scatter([self.joint_points[i][0]],
[self.joint_points[i][1]],
s=10,
c="red")
self.axes[i].set_title(titles[i])
plt.title("Joint Angle")
plt.xlabel("t (0 to 1)")
plt.ylabel("theta (rad)")
self.fig.canvas.draw()
def cur_pt_in_theta(self):
if self.theta_version: return self.last_pos
return to_theta(self.last_pos,
self.circular_index_select,
cross_point=-np.pi,
die=False)
def do_motion(self, event):
o_x = event.x
o_y = event.y
x = event.x - self.window_shape[0] / 2
y = self.window_shape[1] / 2 - event.y
scale = self.get_current_scale()
event.x = x / scale + self.center[0]
event.y = y / scale + self.center[1]
segment = self.segments[self.index]
self.joint_thetas = segment.joint_thetas()
hovered_t = segment.intersection(event)
if hovered_t:
min_diff = np.inf
closest_t = None
closest_thetas = None
for i in range(len(self.joint_thetas[0])):
t = self.joint_thetas[0][i]
diff = abs(t - hovered_t)
if diff < min_diff:
min_diff = diff
closest_t = t
closest_thetas = [
self.joint_thetas[1][0][i], self.joint_thetas[1][1][i],
self.joint_thetas[1][2][i]
]
self.joint_points = [(closest_t, closest_theta)
for closest_theta in closest_thetas]
event.x = o_x
event.y = o_y
self.redraw()
def do_key_press(self, event):
keyval = Gdk.keyval_to_lower(event.keyval)
print("Gdk.KEY_" + Gdk.keyval_name(keyval))
if keyval == Gdk.KEY_q:
print("Found q key and exiting.")
quit_main_loop()
elif keyval == Gdk.KEY_c:
# Increment which arm solution we render
self.circular_index_select += 1
print(self.circular_index_select)
elif keyval == Gdk.KEY_v:
# Decrement which arm solution we render
self.circular_index_select -= 1
print(self.circular_index_select)
elif keyval == Gdk.KEY_r:
self.prev_segment_pt = self.now_segment_pt
elif keyval == Gdk.KEY_o:
# Only prints current segment
print(repr(self.segments[self.index]))
elif keyval == Gdk.KEY_g:
# Generate theta points.
if self.segments:
print(repr(self.segments[self.index].ToThetaPoints()))
elif keyval == Gdk.KEY_e:
best_pt = self.now_segment_pt
best_dist = 1e10
for segment in self.segments:
d = angle_dist_sqr(segment.start, self.now_segment_pt)
if (d < best_dist):
best_pt = segment.start
best_dist = d
d = angle_dist_sqr(segment.end, self.now_segment_pt)
if (d < best_dist):
best_pt = segment.end
best_dist = d
self.now_segment_pt = best_pt
elif keyval == Gdk.KEY_p:
if self.index > 0:
self.index -= 1
else:
self.index = len(self.segments) - 1
print("Switched to segment:", self.segments[self.index].name)
self.segments[self.index].Print(graph_paths.points)
elif keyval == Gdk.KEY_n:
self.index += 1
self.index = self.index % len(self.segments)
print("Switched to segment:", self.segments[self.index].name)
self.segments[self.index].Print(graph_paths.points)
elif keyval == Gdk.KEY_t:
# Toggle between theta and xy renderings
if self.theta_version:
theta1, theta2 = self.last_pos
data = to_xy(theta1, theta2)
self.circular_index_select = int(
np.floor((theta2 - theta1) / np.pi))
self.last_pos = (data[0], data[1])
else:
self.last_pos = self.cur_pt_in_theta()
self.theta_version = not self.theta_version
self.reinit_extents()
elif keyval == Gdk.KEY_z:
self.edit_control1 = not self.edit_control1
if self.edit_control1:
self.now_segment_pt = self.segments[self.index].control1
else:
self.now_segment_pt = self.segments[self.index].control2
if not self.theta_version:
data = to_xy(self.now_segment_pt[0], self.now_segment_pt[1])
self.last_pos = (data[0], data[1])
else:
self.last_pos = self.now_segment_pt
print("self.last_pos: ", self.last_pos, " ci: ",
self.circular_index_select)
self.redraw()
def do_button_press(self, event):
last_pos = self.last_pos
self.last_pos = (event.x, event.y)
pt_theta = self.cur_pt_in_theta()
if pt_theta is None:
self.last_pos = last_pos
return
self.now_segment_pt = np.array(shift_angles(pt_theta))
if self.edit_control1:
self.segments[self.index].control1 = self.now_segment_pt
else:
self.segments[self.index].control2 = self.now_segment_pt
print('Clicked at theta: np.array([%s, %s])' %
(self.now_segment_pt[0], self.now_segment_pt[1]))
if not self.theta_version:
print(
'Clicked at to_theta_with_circular_index(%.3f, %.3f, circular_index=%d)'
% (self.last_pos[0], self.last_pos[1],
self.circular_index_select))
self.segments[self.index].Print(graph_paths.points)
self.redraw()
arm_ui = ArmUi(graph_paths.segments)
print('Starting with segment: ', arm_ui.segments[arm_ui.index].name)
arm_ui.segments[arm_ui.index].Print(graph_paths.points)
basic_window.RunApp()