blob: 74ed026fe39544e4879c1f9207af7cebbf41c769 [file] [log] [blame]
#include "frc971/control_loops/drivetrain/drivetrain.h"
#include <stdio.h>
#include <sched.h>
#include <cmath>
#include "aos/aos_core.h"
#include "aos/common/logging/logging.h"
#include "aos/common/queue.h"
#include "frc971/control_loops/state_feedback_loop.h"
#include "frc971/control_loops/drivetrain/drivetrain_motor_plant.h"
#include "frc971/control_loops/drivetrain/drivetrain.q.h"
#include "frc971/queues/GyroAngle.q.h"
#include "frc971/queues/Piston.q.h"
using frc971::sensors::gyro;
namespace frc971 {
namespace control_loops {
// Width of the robot.
const double width = 22.0 / 100.0 * 2.54;
class DrivetrainMotorsSS : public StateFeedbackLoop<4, 2, 2> {
public:
DrivetrainMotorsSS (void)
: StateFeedbackLoop(MakeDrivetrainLoop()) {
_offset = 0;
_integral_offset = 0;
_left_goal = 0.0;
_right_goal = 0.0;
_raw_left = 0.0;
_raw_right = 0.0;
}
void SetGoal(double left, double left_velocity, double right, double right_velocity) {
_left_goal = left;
_right_goal = right;
R << left + _integral_offset * width / 2.0, left_velocity, right - _integral_offset * width / 2.0, right_velocity;
}
void SetRawPosition(double left, double right) {
_raw_right = right;
_raw_left = left;
Y << left + _offset + _integral_offset, right - _offset + _integral_offset;
}
void SetPosition(double left, double right, double gyro, bool control_loop_driving) {
// Decay the offset quickly because this gyro is great.
_offset = (0.25) * (right - left - gyro * width) / 2.0 + 0.75 * _offset;
const double angle_error = (_right_goal - _left_goal) / width - (_raw_right - _offset - _raw_left - _offset) / width;
if (!control_loop_driving) {
_integral_offset = 0.0;
} else if (std::abs(angle_error) < M_PI / 10.0) {
_integral_offset -= angle_error * 0.010;
} else {
_integral_offset *= 0.97;
}
_gyro = gyro;
SetRawPosition(left, right);
LOG(DEBUG, "Left %f->%f Right %f->%f Gyro %f aerror %f ioff %f\n", left + _offset, _left_goal, right - _offset, _right_goal, gyro, angle_error, _integral_offset);
}
double UnDeadband(double value) {
const double positive_deadband_power = 0.15 * 12;
const double negative_deadband_power = 0.09 * 12;
if (value > 0) {
value += positive_deadband_power;
}
if (value < 0) {
value -= negative_deadband_power;
}
if (value > 12.0) {
value = 12.0;
}
if (value < -12.0) {
value = -12.0;
}
return value;
}
void SendMotors(Drivetrain::Output *status) {
if (status) {
status->left_voltage = UnDeadband(U[0]);
status->right_voltage = UnDeadband(U[1]);
}
}
void PrintMotors() const {
// LOG(DEBUG, "Left Power %f Right Power %f lg %f rg %f le %f re %f gyro %f\n", U[0], U[1], R[0], R[2], Y[0], Y[1], _gyro);
LOG(DEBUG, "lg %f rg %f le %f re %f gyro %f off %f\n", R[0], R[2], Y[0], Y[1], _gyro * 180.0 / M_PI, _offset);
}
private:
double _integral_offset;
double _offset;
double _gyro;
double _left_goal;
double _right_goal;
double _raw_left;
double _raw_right;
};
class DrivetrainMotorsOL {
public:
DrivetrainMotorsOL() {
_old_wheel = 0.0;
quick_stop_accumulator = 0.0;
_wheel = 0.0;
_throttle = 0.0;
_quickturn = false;
_highgear = true;
_neg_inertia_accumulator = 0.0;
_left_pwm = 0.0;
_right_pwm = 0.0;
}
void SetGoal(double wheel, double throttle, bool quickturn, bool highgear) {
_wheel = wheel;
_throttle = throttle;
_quickturn = quickturn;
_highgear = highgear;
_left_pwm = 0.0;
_right_pwm = 0.0;
}
void Update(void) {
double overPower;
float sensitivity = 1.7;
float angular_power;
float linear_power;
double wheel;
double neg_inertia = _wheel - _old_wheel;
_old_wheel = _wheel;
double wheelNonLinearity;
if (_highgear) {
wheelNonLinearity = 0.1; // used to be csvReader->TURN_NONLIN_HIGH
// Apply a sin function that's scaled to make it feel better.
const double angular_range = M_PI / 2.0 * wheelNonLinearity;
wheel = sin(angular_range * _wheel) / sin(angular_range);
wheel = sin(angular_range * wheel) / sin(angular_range);
} else {
wheelNonLinearity = 0.1; // used to be csvReader->TURN_NONLIN_LOW
// Apply a sin function that's scaled to make it feel better.
const double angular_range = M_PI / 2.0 * wheelNonLinearity;
wheel = sin(angular_range * _wheel) / sin(angular_range);
wheel = sin(angular_range * wheel) / sin(angular_range);
wheel = sin(angular_range * wheel) / sin(angular_range);
}
double neg_inertia_scalar;
if (_highgear) {
neg_inertia_scalar = 20.0; // used to be csvReader->NEG_INTERTIA_HIGH
sensitivity = 1.22; // used to be csvReader->SENSE_HIGH
} else {
if (wheel * neg_inertia > 0) {
neg_inertia_scalar = 16; // used to be csvReader->NEG_INERTIA_LOW_MORE
} else {
if (fabs(wheel) > 0.65) {
neg_inertia_scalar = 16; // used to be csvReader->NEG_INTERTIA_LOW_LESS_EXT
} else {
neg_inertia_scalar = 16; // used to be csvReader->NEG_INTERTIA_LOW_LESS
}
}
sensitivity = 1.24; // used to be csvReader->SENSE_LOW
}
double neg_inertia_power = neg_inertia * neg_inertia_scalar;
_neg_inertia_accumulator += neg_inertia_power;
wheel = wheel + _neg_inertia_accumulator;
if (_neg_inertia_accumulator > 1) {
_neg_inertia_accumulator -= 1;
} else if (_neg_inertia_accumulator < -1) {
_neg_inertia_accumulator += 1;
} else {
_neg_inertia_accumulator = 0;
}
linear_power = _throttle;
const double quickstop_scalar = 6;
if (_quickturn) {
double qt_angular_power = wheel;
const double alpha = 0.1;
if (fabs(linear_power) < 0.2) {
if (qt_angular_power > 1) qt_angular_power = 1.0;
if (qt_angular_power < -1) qt_angular_power = -1.0;
} else {
qt_angular_power = 0.0;
}
quick_stop_accumulator = (1 - alpha) * quick_stop_accumulator + alpha * qt_angular_power * quickstop_scalar;
overPower = 1.0;
if (_highgear) {
sensitivity = 1.0;
} else {
sensitivity = 1.0;
}
angular_power = wheel;
} else {
overPower = 0.0;
angular_power = fabs(_throttle) * wheel * sensitivity;
angular_power -= quick_stop_accumulator;
#if 0
if (quick_stop_accumulator > 1) {
quick_stop_accumulator -= 1;
} else if (quick_stop_accumulator < -1) {
quick_stop_accumulator += 1;
} else {
quick_stop_accumulator = 0;
}
#endif
}
_right_pwm = _left_pwm = linear_power;
_left_pwm += angular_power;
_right_pwm -= angular_power;
if (_left_pwm > 1.0) {
_right_pwm -= overPower*(_left_pwm - 1.0);
_left_pwm = 1.0;
} else if (_right_pwm > 1.0) {
_left_pwm -= overPower*(_right_pwm - 1.0);
_right_pwm = 1.0;
} else if (_left_pwm < -1.0) {
_right_pwm += overPower*(-1.0 - _left_pwm);
_left_pwm = -1.0;
} else if (_right_pwm < -1.0) {
_left_pwm += overPower*(-1.0 - _right_pwm);
_right_pwm = -1.0;
}
}
void SendMotors(Drivetrain::Output *output) {
LOG(DEBUG, "left pwm: %f right pwm: %f wheel: %f throttle: %f, qa %f\n",
_left_pwm, _right_pwm, _wheel, _throttle, quick_stop_accumulator);
if (output) {
output->left_voltage = _left_pwm * 12.0;
output->right_voltage = _right_pwm * 12.0;
}
if (_highgear) {
shifters.MakeWithBuilder().set(false).Send();
} else {
shifters.MakeWithBuilder().set(true).Send();
}
}
private:
double _old_wheel;
double _wheel;
double _throttle;
bool _quickturn;
bool _highgear;
double _neg_inertia_accumulator;
double _left_pwm;
double _right_pwm;
double quick_stop_accumulator;
};
void DrivetrainLoop::RunIteration(const Drivetrain::Goal *goal,
const Drivetrain::Position *position,
Drivetrain::Output *output,
Drivetrain::Status * /*status*/) {
// TODO(aschuh): These should be members of the class.
static DrivetrainMotorsSS dt_closedloop;
static DrivetrainMotorsOL dt_openloop;
bool bad_pos = false;
if (position == NULL) {
LOG(WARNING, "no position\n");
bad_pos = true;
}
bool bad_output = false;
if (output == NULL) {
LOG(WARNING, "no output\n");
bad_output = true;
}
double wheel = goal->steering;
double throttle = goal->throttle;
bool quickturn = goal->quickturn;
bool highgear = goal->highgear;
bool control_loop_driving = goal->control_loop_driving;
double left_goal = goal->left_goal;
double right_goal = goal->right_goal;
dt_closedloop.SetGoal(left_goal, 0.0, right_goal, 0.0);
if (!bad_pos) {
const double left_encoder = position->left_encoder;
const double right_encoder = position->right_encoder;
if (gyro.FetchLatest()) {
dt_closedloop.SetPosition(left_encoder, right_encoder,
gyro->angle, control_loop_driving);
} else {
dt_closedloop.SetRawPosition(left_encoder, right_encoder);
}
}
dt_closedloop.Update(!bad_pos, bad_pos || bad_output);
dt_openloop.SetGoal(wheel, throttle, quickturn, highgear);
dt_openloop.Update();
if (control_loop_driving) {
dt_closedloop.SendMotors(output);
} else {
dt_openloop.SendMotors(output);
}
}
} // namespace control_loops
} // namespace frc971