blob: 92191929ffd76bf0173cd15a5281517b8d1ba4fa [file] [log] [blame]
#if !AOS_DEBUG
#define NDEBUG
#endif
#include "aos/linux_code/ipc_lib/queue.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <memory>
#include <algorithm>
#include "aos/common/type_traits.h"
#include "aos/linux_code/ipc_lib/core_lib.h"
namespace aos {
namespace {
static_assert(shm_ok<RawQueue>::value,
"RawQueue instances go into shared memory");
const bool kReadDebug = false;
const bool kWriteDebug = false;
const bool kRefDebug = false;
const bool kFetchDebug = false;
const bool kReadIndexDebug = false;
// The number of extra messages the pool associated with each queue will be able
// to hold (for readers who are slow about freeing them or who leak one when
// they get killed).
const int kExtraMessages = 20;
} // namespace
constexpr Options<RawQueue>::Option RawQueue::kPeek;
constexpr Options<RawQueue>::Option RawQueue::kFromEnd;
constexpr Options<RawQueue>::Option RawQueue::kNonBlock;
constexpr Options<RawQueue>::Option RawQueue::kBlock;
constexpr Options<RawQueue>::Option RawQueue::kOverride;
// This is what gets stuck in before each queue message in memory. It is always
// allocated aligned to 8 bytes and its size has to maintain that alignment for
// the message that follows immediately.
struct RawQueue::MessageHeader {
MessageHeader *next;
// Gets the message header immediately preceding msg.
static MessageHeader *Get(const void *msg) {
return reinterpret_cast<MessageHeader *>(__builtin_assume_aligned(
static_cast<uint8_t *>(const_cast<void *>(msg)) - sizeof(MessageHeader),
alignof(MessageHeader)));
}
int32_t ref_count() const {
return __atomic_load_n(&ref_count_, __ATOMIC_RELAXED);
}
void set_ref_count(int32_t val) {
__atomic_store_n(&ref_count_, val, __ATOMIC_RELAXED);
}
void ref_count_sub() {
__atomic_sub_fetch(&ref_count_, 1, __ATOMIC_RELAXED);
}
void ref_count_add() {
__atomic_add_fetch(&ref_count_, 1, __ATOMIC_RELAXED);
}
private:
// This gets accessed with atomic instructions without any
// locks held by various member functions.
int32_t ref_count_;
// Padding to make the total size 8 bytes if we have 4-byte pointers or bump
// it to 16 if a pointer is 8 bytes by itself.
#if __SIZEOF_POINTER__ == 8
#ifdef __clang__
// Clang is smart enough to realize this is unused, but GCC doesn't like the
// attribute here...
__attribute__((unused))
#endif
char padding[4];
#elif __SIZEOF_POINTER__ == 4
// No padding needed to get 8 byte total size.
#else
#error Unknown pointer size.
#endif
};
inline int RawQueue::index_add1(int index) {
// Doing it this way instead of with % is more efficient on ARM.
int r = index + 1;
assert(index <= data_length_);
if (r == data_length_) {
return 0;
} else {
return r;
}
}
void RawQueue::DecrementMessageReferenceCount(const void *msg) {
MessageHeader *header = MessageHeader::Get(msg);
header->ref_count_sub();
if (kRefDebug) {
printf("%p ref dec count: %p count=%d\n", this, msg, header->ref_count());
}
// The only way it should ever be 0 is if we were the last one to decrement,
// in which case nobody else should have it around to re-increment it or
// anything in the middle, so this is safe to do not atomically with the
// decrement.
if (header->ref_count() == 0) {
DoFreeMessage(msg);
} else {
assert(header->ref_count() > 0);
}
}
inline void RawQueue::IncrementMessageReferenceCount(const void *msg) const {
MessageHeader *const header = MessageHeader::Get(msg);
header->ref_count_add();
if (kRefDebug) {
printf("%p ref inc count: %p\n", this, msg);
}
}
inline void RawQueue::DoFreeMessage(const void *msg) {
MessageHeader *header = MessageHeader::Get(msg);
if (kRefDebug) {
printf("%p ref free to %p: %p\n", this, recycle_, msg);
}
if (__builtin_expect(recycle_ != nullptr, 0)) {
void *const new_msg = recycle_->GetMessage();
if (new_msg == nullptr) {
fprintf(stderr, "queue: couldn't get a message"
" for recycle queue %p\n", recycle_);
} else {
header->ref_count_add();
if (!recycle_->WriteMessage(const_cast<void *>(msg), kOverride)) {
fprintf(stderr, "queue: %p->WriteMessage(%p, kOverride) failed."
" aborting\n", recycle_, msg);
printf("see stderr\n");
abort();
}
msg = new_msg;
header = MessageHeader::Get(new_msg);
}
}
// This works around GCC bug 60272 (fixed in 4.8.3).
// new_next should just get replaced with header->next (and the body of the
// loop should become empty).
// The bug is that the store to new_next after the compare/exchange is
// unconditional but it should only be if it fails, which could mean
// overwriting what somebody else who preempted us right then changed it to.
// TODO(brians): Get rid of this workaround once we get a new enough GCC.
MessageHeader *new_next = __atomic_load_n(&free_messages_, __ATOMIC_RELAXED);
do {
header->next = new_next;
} while (__builtin_expect(
!__atomic_compare_exchange_n(&free_messages_, &new_next, header, true,
__ATOMIC_RELEASE, __ATOMIC_RELAXED),
0));
}
void *RawQueue::GetMessage() {
MessageHeader *header = __atomic_load_n(&free_messages_, __ATOMIC_RELAXED);
do {
if (__builtin_expect(header == nullptr, 0)) {
LOG(FATAL, "overused pool of queue %p\n", this);
}
} while (__builtin_expect(
!__atomic_compare_exchange_n(&free_messages_, &header, header->next, true,
__ATOMIC_ACQ_REL, __ATOMIC_RELAXED),
0));
void *msg = reinterpret_cast<uint8_t *>(header + 1);
// It might be uninitialized, 0 from a previous use, or 1 from previously
// being recycled.
header->set_ref_count(1);
if (kRefDebug) {
printf("%p ref alloc: %p\n", this, msg);
}
return msg;
}
RawQueue::RawQueue(const char *name, size_t length, int hash, int queue_length)
: readable_(&data_lock_), writable_(&data_lock_) {
static_assert(shm_ok<RawQueue::MessageHeader>::value,
"the whole point is to stick it in shared memory");
static_assert((sizeof(RawQueue::MessageHeader) % 8) == 0,
"need to revalidate size/alignent assumptions");
if (queue_length < 1) {
LOG(FATAL, "queue length %d needs to be at least 1\n", queue_length);
}
const size_t name_size = strlen(name) + 1;
char *temp = static_cast<char *>(shm_malloc(name_size));
memcpy(temp, name, name_size);
name_ = temp;
length_ = length;
hash_ = hash;
queue_length_ = queue_length;
next_ = NULL;
recycle_ = NULL;
if (kFetchDebug) {
printf("initializing name=%s, length=%zd, hash=%d, queue_length=%d\n",
name, length, hash, queue_length);
}
data_length_ = queue_length + 1;
data_ = static_cast<void **>(shm_malloc(sizeof(void *) * data_length_));
data_start_ = 0;
data_end_ = 0;
messages_ = 0;
msg_length_ = length + sizeof(MessageHeader);
// Create all of the messages for the free list and stick them on.
{
MessageHeader *previous = nullptr;
for (int i = 0; i < queue_length + kExtraMessages; ++i) {
MessageHeader *const message =
static_cast<MessageHeader *>(shm_malloc(msg_length_));
free_messages_ = message;
message->next = previous;
previous = message;
}
}
readable_waiting_ = false;
if (kFetchDebug) {
printf("made queue %s\n", name);
}
}
RawQueue *RawQueue::Fetch(const char *name, size_t length, int hash,
int queue_length) {
if (kFetchDebug) {
printf("fetching queue %s\n", name);
}
if (mutex_lock(&global_core->mem_struct->queues.lock) != 0) {
LOG(FATAL, "mutex_lock(%p) failed\n",
&global_core->mem_struct->queues.lock);
}
RawQueue *current = static_cast<RawQueue *>(
global_core->mem_struct->queues.pointer);
if (current != NULL) {
while (true) {
// If we found a matching queue.
if (strcmp(current->name_, name) == 0 && current->length_ == length &&
current->hash_ == hash && current->queue_length_ == queue_length) {
mutex_unlock(&global_core->mem_struct->queues.lock);
return current;
} else {
if (kFetchDebug) {
printf("rejected queue %s strcmp=%d target=%s\n", current->name_,
strcmp(current->name_, name), name);
}
}
// If this is the last one.
if (current->next_ == NULL) break;
current = current->next_;
}
}
RawQueue *r = new (shm_malloc(sizeof(RawQueue)))
RawQueue(name, length, hash, queue_length);
if (current == NULL) { // if we don't already have one
global_core->mem_struct->queues.pointer = r;
} else {
current->next_ = r;
}
mutex_unlock(&global_core->mem_struct->queues.lock);
return r;
}
RawQueue *RawQueue::Fetch(const char *name, size_t length, int hash,
int queue_length,
int recycle_hash, int recycle_length, RawQueue **recycle) {
RawQueue *r = Fetch(name, length, hash, queue_length);
r->recycle_ = Fetch(name, length, recycle_hash, recycle_length);
if (r == r->recycle_) {
fprintf(stderr, "queue: r->recycle_(=%p) == r(=%p)\n", r->recycle_, r);
printf("see stderr\n");
r->recycle_ = NULL;
abort();
}
*recycle = r->recycle_;
return r;
}
bool RawQueue::DoWriteMessage(void *msg, Options<RawQueue> options) {
if (kWriteDebug) {
printf("queue: %p->WriteMessage(%p, %x)\n", this, msg, options.printable());
}
{
IPCMutexLocker locker(&data_lock_);
CHECK(!locker.owner_died());
bool writable_waited = false;
int new_end;
while (true) {
new_end = index_add1(data_end_);
// If there is room in the queue right now.
if (new_end != data_start_) break;
if (options & kNonBlock) {
if (kWriteDebug) {
printf("queue: not blocking on %p. returning false\n", this);
}
DecrementMessageReferenceCount(msg);
return false;
} else if (options & kOverride) {
if (kWriteDebug) {
printf("queue: overriding on %p\n", this);
}
// Avoid leaking the message that we're going to overwrite.
DecrementMessageReferenceCount(data_[data_start_]);
data_start_ = index_add1(data_start_);
} else { // kBlock
assert(options & kBlock);
if (kWriteDebug) {
printf("queue: going to wait for writable_ of %p\n", this);
}
CHECK(!writable_.Wait());
writable_waited = true;
}
}
data_[data_end_] = msg;
++messages_;
data_end_ = new_end;
if (readable_waiting_) {
if (kWriteDebug) {
printf("queue: broadcasting to readable_ of %p\n", this);
}
readable_waiting_ = false;
readable_.Broadcast();
} else if (kWriteDebug) {
printf("queue: skipping broadcast to readable_ of %p\n", this);
}
// If we got a signal on writable_ here and it's still writable, then we
// need to signal the next person in line (if any).
if (writable_waited && is_writable()) {
if (kWriteDebug) {
printf("queue: resignalling writable_ of %p\n", this);
}
writable_.Signal();
}
}
if (kWriteDebug) {
printf("queue: write returning true on queue %p\n", this);
}
return true;
}
inline void RawQueue::ReadCommonEnd() {
if (is_writable()) {
if (kReadDebug) {
printf("queue: %ssignalling writable_ of %p\n",
writable_start_ ? "not " : "", this);
}
if (!writable_start_) writable_.Signal();
}
}
bool RawQueue::ReadCommonStart(Options<RawQueue> options, int *index) {
while (data_start_ == data_end_ || ((index != NULL) && messages_ <= *index)) {
if (options & kNonBlock) {
if (kReadDebug) {
printf("queue: not going to block waiting on %p\n", this);
}
return false;
} else { // kBlock
assert(options & kBlock);
if (kReadDebug) {
printf("queue: going to wait for readable_ of %p\n", this);
}
readable_waiting_ = true;
// Wait for a message to become readable.
CHECK(!readable_.Wait());
if (kReadDebug) {
printf("queue: done waiting for readable_ of %p\n", this);
}
}
}
// We have to check down here because we might have unlocked the mutex while
// Wait()ing above so this value might have changed.
writable_start_ = is_writable();
if (kReadDebug) {
printf("queue: %p->read(%p) start=%d end=%d writable_start=%d\n",
this, index, data_start_, data_end_, writable_start_);
}
return true;
}
inline int RawQueue::LastMessageIndex() const {
int pos = data_end_ - 1;
if (pos < 0) { // If it wrapped around.
pos = data_length_ - 1;
}
return pos;
}
const void *RawQueue::DoReadMessage(Options<RawQueue> options) {
// TODO(brians): Test this function.
if (kReadDebug) {
printf("queue: %p->ReadMessage(%x)\n", this, options.printable());
}
void *msg = NULL;
IPCMutexLocker locker(&data_lock_);
CHECK(!locker.owner_died());
if (!ReadCommonStart(options, nullptr)) {
if (kReadDebug) {
printf("queue: %p common returned false\n", this);
}
return NULL;
}
if (options & kFromEnd) {
if (options & kPeek) {
if (kReadDebug) {
printf("queue: %p shortcutting c2: %d\n", this, LastMessageIndex());
}
msg = data_[LastMessageIndex()];
IncrementMessageReferenceCount(msg);
} else {
while (true) {
if (kReadDebug) {
printf("queue: %p start of c2\n", this);
}
// This loop pulls each message out of the buffer.
const int pos = data_start_;
data_start_ = index_add1(data_start_);
// If this is the last one.
if (data_start_ == data_end_) {
if (kReadDebug) {
printf("queue: %p reading from c2: %d\n", this, pos);
}
msg = data_[pos];
break;
}
// This message is not going to be in the queue any more.
DecrementMessageReferenceCount(data_[pos]);
}
}
} else {
if (kReadDebug) {
printf("queue: %p reading from d2: %d\n", this, data_start_);
}
msg = data_[data_start_];
if (options & kPeek) {
IncrementMessageReferenceCount(msg);
} else {
data_start_ = index_add1(data_start_);
}
}
ReadCommonEnd();
if (kReadDebug) {
printf("queue: %p read returning %p\n", this, msg);
}
return msg;
}
const void *RawQueue::DoReadMessageIndex(Options<RawQueue> options,
int *index) {
if (kReadDebug) {
printf("queue: %p->ReadMessageIndex(%x, %p(*=%d))\n",
this, options.printable(), index, *index);
}
void *msg = NULL;
IPCMutexLocker locker(&data_lock_);
CHECK(!locker.owner_died());
if (!ReadCommonStart(options, index)) {
if (kReadDebug) {
printf("queue: %p common returned false\n", this);
}
return NULL;
}
// TODO(parker): Handle integer wrap on the index.
if (options & kFromEnd) {
if (kReadDebug) {
printf("queue: %p reading from c1: %d\n", this, LastMessageIndex());
}
msg = data_[LastMessageIndex()];
// We'd skip this if we had kPeek, but kPeek | kFromEnd isn't valid for
// reading with an index.
*index = messages_;
} else {
// Where we're going to start reading.
int my_start;
const int unread_messages = messages_ - *index;
assert(unread_messages > 0);
int current_messages = data_end_ - data_start_;
if (current_messages < 0) current_messages += data_length_;
if (kReadIndexDebug) {
printf("queue: %p start=%d end=%d current=%d\n",
this, data_start_, data_end_, current_messages);
}
assert(current_messages > 0);
// If we're behind the available messages.
if (unread_messages > current_messages) {
// Catch index up to the last available message.
*index = messages_ - current_messages;
// And that's the one we're going to read.
my_start = data_start_;
if (kReadIndexDebug) {
printf("queue: %p jumping ahead to message %d (have %d) (at %d)\n",
this, *index, messages_, data_start_);
}
} else {
// Just start reading at the first available message that we haven't yet
// read.
my_start = data_end_ - unread_messages;
if (kReadIndexDebug) {
printf("queue: %p original read from %d\n", this, my_start);
}
if (data_start_ < data_end_) {
assert(my_start >= 0);
}
if (my_start < 0) my_start += data_length_;
}
if (kReadDebug) {
printf("queue: %p reading from d1: %d\n", this, my_start);
}
// We have to be either after the start or before the end, even if the queue
// is wrapped around (should be both if it's not).
assert((my_start >= data_start_) || (my_start < data_end_));
// More sanity checking.
assert((my_start >= 0) && (my_start < data_length_));
msg = data_[my_start];
if (!(options & kPeek)) ++(*index);
}
IncrementMessageReferenceCount(msg);
ReadCommonEnd();
return msg;
}
int RawQueue::FreeMessages() const {
int r = 0;
MessageHeader *header = free_messages_;
while (header != nullptr) {
++r;
header = header->next;
}
return r;
}
} // namespace aos