Moved bot3-specific python stuff in with bot3.
diff --git a/bot3/control_loops/python/control_loop.py b/bot3/control_loops/python/control_loop.py
new file mode 100644
index 0000000..832d4cc
--- /dev/null
+++ b/bot3/control_loops/python/control_loop.py
@@ -0,0 +1,297 @@
+import sys
+sys.path.append('../../frc971/control_loops/python')
+import controls
+import numpy
+
+class ControlLoopWriter(object):
+  def __init__(self, gain_schedule_name, loops, namespaces=None):
+    """Constructs a control loop writer.
+
+    Args:
+      gain_schedule_name: string, Name of the overall controller.
+      loops: array[ControlLoop], a list of control loops to gain schedule
+        in order.
+      namespaces: array[string], a list of names of namespaces to nest in
+        order.  If None, the default will be used.
+    """
+    self._gain_schedule_name = gain_schedule_name
+    self._loops = loops
+    if namespaces:
+      self._namespaces = namespaces
+    else:
+      self._namespaces = ['bot3', 'control_loops']
+
+    self._namespace_start = '\n'.join(
+        ['namespace %s {' % name for name in self._namespaces])
+
+    self._namespace_end = '\n'.join(
+        ['}  // namespace %s' % name for name in reversed(self._namespaces)])
+
+  def _HeaderGuard(self, header_file):
+    return ('BOT3_CONTROL_LOOPS_' +
+            header_file.upper().replace('.', '_').replace('/', '_') +
+            '_')
+
+  def Write(self, header_file, cc_file):
+    """Writes the loops to the specified files."""
+    self.WriteHeader(header_file)
+    self.WriteCC(header_file, cc_file)
+
+  def _GenericType(self, typename):
+    """Returns a loop template using typename for the type."""
+    num_states = self._loops[0].A.shape[0]
+    num_inputs = self._loops[0].B.shape[1]
+    num_outputs = self._loops[0].C.shape[0]
+    return '%s<%d, %d, %d>' % (
+        typename, num_states, num_inputs, num_outputs)
+
+  def _ControllerType(self):
+    """Returns a template name for StateFeedbackController."""
+    return self._GenericType('StateFeedbackController')
+
+  def _LoopType(self):
+    """Returns a template name for StateFeedbackLoop."""
+    return self._GenericType('StateFeedbackLoop')
+
+  def _PlantType(self):
+    """Returns a template name for StateFeedbackPlant."""
+    return self._GenericType('StateFeedbackPlant')
+
+  def _CoeffType(self):
+    """Returns a template name for StateFeedbackPlantCoefficients."""
+    return self._GenericType('StateFeedbackPlantCoefficients')
+
+  def WriteHeader(self, header_file):
+    """Writes the header file to the file named header_file."""
+    with open(header_file, 'w') as fd:
+      header_guard = self._HeaderGuard(header_file)
+      fd.write('#ifndef %s\n'
+               '#define %s\n\n' % (header_guard, header_guard))
+      fd.write('#include \"frc971/control_loops/state_feedback_loop.h\"\n')
+      fd.write('\n')
+
+      fd.write(self._namespace_start)
+      fd.write('\n\n')
+      for loop in self._loops:
+        fd.write(loop.DumpPlantHeader())
+        fd.write('\n')
+        fd.write(loop.DumpControllerHeader())
+        fd.write('\n')
+
+      fd.write('%s Make%sPlant();\n\n' %
+               (self._PlantType(), self._gain_schedule_name))
+
+      fd.write('%s Make%sLoop();\n\n' %
+               (self._LoopType(), self._gain_schedule_name))
+
+      fd.write(self._namespace_end)
+      fd.write('\n\n')
+      fd.write("#endif  // %s\n" % header_guard)
+
+  def WriteCC(self, header_file_name, cc_file):
+    """Writes the cc file to the file named cc_file."""
+    with open(cc_file, 'w') as fd:
+      fd.write('#include \"bot3/control_loops/%s\"\n' % header_file_name)
+      fd.write('\n')
+      fd.write('#include <vector>\n')
+      fd.write('\n')
+      fd.write('#include \"frc971/control_loops/state_feedback_loop.h\"\n')
+      fd.write('\n')
+      fd.write(self._namespace_start)
+      fd.write('\n\n')
+      for loop in self._loops:
+        fd.write(loop.DumpPlant())
+        fd.write('\n')
+
+      for loop in self._loops:
+        fd.write(loop.DumpController())
+        fd.write('\n')
+
+      fd.write('%s Make%sPlant() {\n' %
+               (self._PlantType(), self._gain_schedule_name))
+      fd.write('  ::std::vector<%s *> plants(%d);\n' % (
+          self._CoeffType(), len(self._loops)))
+      for index, loop in enumerate(self._loops):
+        fd.write('  plants[%d] = new %s(%s);\n' %
+                 (index, self._CoeffType(),
+                  loop.PlantFunction()))
+      fd.write('  return %s(plants);\n' % self._PlantType())
+      fd.write('}\n\n')
+
+      fd.write('%s Make%sLoop() {\n' %
+               (self._LoopType(), self._gain_schedule_name))
+      fd.write('  ::std::vector<%s *> controllers(%d);\n' % (
+          self._ControllerType(), len(self._loops)))
+      for index, loop in enumerate(self._loops):
+        fd.write('  controllers[%d] = new %s(%s);\n' %
+                 (index, self._ControllerType(),
+                  loop.ControllerFunction()))
+      fd.write('  return %s(controllers);\n' % self._LoopType())
+      fd.write('}\n\n')
+
+      fd.write(self._namespace_end)
+      fd.write('\n')
+
+
+class ControlLoop(object):
+  def __init__(self, name):
+    """Constructs a control loop object.
+
+    Args:
+      name: string, The name of the loop to use when writing the C++ files.
+    """
+    self._name = name
+
+  def ContinuousToDiscrete(self, A_continuous, B_continuous, dt):
+    """Calculates the discrete time values for A and B.
+
+      Args:
+        A_continuous: numpy.matrix, The continuous time A matrix
+        B_continuous: numpy.matrix, The continuous time B matrix
+        dt: float, The time step of the control loop
+
+      Returns:
+        (A, B), numpy.matrix, the control matricies.
+    """
+    return controls.c2d(A_continuous, B_continuous, dt)
+
+  def InitializeState(self):
+    """Sets X, Y, and X_hat to zero defaults."""
+    self.X = numpy.zeros((self.A.shape[0], 1))
+    self.Y = self.C * self.X
+    self.X_hat = numpy.zeros((self.A.shape[0], 1))
+
+  def PlaceControllerPoles(self, poles):
+    """Places the controller poles.
+
+    Args:
+      poles: array, An array of poles.  Must be complex conjegates if they have
+        any imaginary portions.
+    """
+    self.K = controls.dplace(self.A, self.B, poles)
+
+  def PlaceObserverPoles(self, poles):
+    """Places the observer poles.
+
+    Args:
+      poles: array, An array of poles.  Must be complex conjegates if they have
+        any imaginary portions.
+    """
+    self.L = controls.dplace(self.A.T, self.C.T, poles).T
+
+  def Update(self, U):
+    """Simulates one time step with the provided U."""
+    U = numpy.clip(U, self.U_min, self.U_max)
+    self.X = self.A * self.X + self.B * U
+    self.Y = self.C * self.X + self.D * U
+
+  def UpdateObserver(self, U):
+    """Updates the observer given the provided U."""
+    self.X_hat = (self.A * self.X_hat + self.B * U +
+                  self.L * (self.Y - self.C * self.X_hat - self.D * U))
+
+  def _DumpMatrix(self, matrix_name, matrix):
+    """Dumps the provided matrix into a variable called matrix_name.
+
+    Args:
+      matrix_name: string, The variable name to save the matrix to.
+      matrix: The matrix to dump.
+
+    Returns:
+      string, The C++ commands required to populate a variable named matrix_name
+        with the contents of matrix.
+    """
+    ans = ['  Eigen::Matrix<double, %d, %d> %s;\n' % (
+        matrix.shape[0], matrix.shape[1], matrix_name)]
+    first = True
+    for x in xrange(matrix.shape[0]):
+      for y in xrange(matrix.shape[1]):
+	element = matrix[x, y]
+        if first:
+          ans.append('  %s << ' % matrix_name)
+          first = False
+        else:
+          ans.append(', ')
+        ans.append(str(element))
+
+    ans.append(';\n')
+    return ''.join(ans)
+
+  def DumpPlantHeader(self):
+    """Writes out a c++ header declaration which will create a Plant object.
+
+    Returns:
+      string, The header declaration for the function.
+    """
+    num_states = self.A.shape[0]
+    num_inputs = self.B.shape[1]
+    num_outputs = self.C.shape[0]
+    return 'StateFeedbackPlantCoefficients<%d, %d, %d> Make%sPlantCoefficients();\n' % (
+        num_states, num_inputs, num_outputs, self._name)
+
+  def DumpPlant(self):
+    """Writes out a c++ function which will create a PlantCoefficients object.
+
+    Returns:
+      string, The function which will create the object.
+    """
+    num_states = self.A.shape[0]
+    num_inputs = self.B.shape[1]
+    num_outputs = self.C.shape[0]
+    ans = ['StateFeedbackPlantCoefficients<%d, %d, %d>'
+           ' Make%sPlantCoefficients() {\n' % (
+        num_states, num_inputs, num_outputs, self._name)]
+
+    ans.append(self._DumpMatrix('A', self.A))
+    ans.append(self._DumpMatrix('B', self.B))
+    ans.append(self._DumpMatrix('C', self.C))
+    ans.append(self._DumpMatrix('D', self.D))
+    ans.append(self._DumpMatrix('U_max', self.U_max))
+    ans.append(self._DumpMatrix('U_min', self.U_min))
+
+    ans.append('  return StateFeedbackPlantCoefficients<%d, %d, %d>'
+               '(A, B, C, D, U_max, U_min);\n' % (num_states, num_inputs,
+                                                  num_outputs))
+    ans.append('}\n')
+    return ''.join(ans)
+
+  def PlantFunction(self):
+    """Returns the name of the plant coefficient function."""
+    return 'Make%sPlantCoefficients()' % self._name
+
+  def ControllerFunction(self):
+    """Returns the name of the controller function."""
+    return 'Make%sController()' % self._name
+
+  def DumpControllerHeader(self):
+    """Writes out a c++ header declaration which will create a Controller object.
+
+    Returns:
+      string, The header declaration for the function.
+    """
+    num_states = self.A.shape[0]
+    num_inputs = self.B.shape[1]
+    num_outputs = self.C.shape[0]
+    return 'StateFeedbackController<%d, %d, %d> %s;\n' % (
+        num_states, num_inputs, num_outputs, self.ControllerFunction())
+
+  def DumpController(self):
+    """Returns a c++ function which will create a Controller object.
+
+    Returns:
+      string, The function which will create the object.
+    """
+    num_states = self.A.shape[0]
+    num_inputs = self.B.shape[1]
+    num_outputs = self.C.shape[0]
+    ans = ['StateFeedbackController<%d, %d, %d> %s {\n' % (
+        num_states, num_inputs, num_outputs, self.ControllerFunction())]
+
+    ans.append(self._DumpMatrix('L', self.L))
+    ans.append(self._DumpMatrix('K', self.K))
+
+    ans.append('  return StateFeedbackController<%d, %d, %d>'
+               '(L, K, Make%sPlantCoefficients());\n' % (num_states, num_inputs,
+                                             num_outputs, self._name))
+    ans.append('}\n')
+    return ''.join(ans)
diff --git a/bot3/control_loops/python/shooter.py b/bot3/control_loops/python/shooter.py
new file mode 100755
index 0000000..27ecc16
--- /dev/null
+++ b/bot3/control_loops/python/shooter.py
@@ -0,0 +1,137 @@
+#!/usr/bin/python
+
+import numpy
+import sys
+from matplotlib import pylab
+import control_loop
+import slycot
+
+class Shooter(control_loop.ControlLoop):
+  def __init__(self):
+    super(Shooter, self).__init__("Shooter")
+    # Stall Torque in N m
+    self.stall_torque = 2.42211227883219
+    # Stall Current in Amps
+    self.stall_current = 133
+    # Free Speed in RPM
+    self.free_speed = 4650.0
+    # Free Current in Amps
+    self.free_current = 2.7
+    # Moment of inertia of the shooter wheel in kg m^2
+    self.J = 0.0032
+    # Resistance of the motor, divided by 2 to account for the 2 motors
+    self.R = 12.0 / self.stall_current
+    # Motor velocity constant
+    self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
+              (12.0 - self.R * self.free_current))
+    # Torque constant
+    self.Kt = self.stall_torque / self.stall_current
+    # Gear ratio
+    self.G = 40.0 / 34.0
+    # Control loop time step
+    self.dt = 0.01
+
+    # State feedback matrices
+    self.A_continuous = numpy.matrix(
+        [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+    self.B_continuous = numpy.matrix(
+        [[self.Kt / (self.J * self.G * self.R)]])
+    self.C = numpy.matrix([[1]])
+    self.D = numpy.matrix([[0]])
+
+    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
+                              self.dt)
+
+    self.InitializeState()
+
+    self.PlaceControllerPoles([.8])
+    # LQR stuff for optimization, if needed.
+   #print self.K
+   #self.R_LQR = numpy.matrix([[1.5]])
+   #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0]
+   #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B)
+   #         * self.B.T * self.P * self.A)
+   #print numpy.linalg.eig(self.A - self.B * self.K)
+
+
+    self.PlaceObserverPoles([0.45])
+
+    self.U_max = numpy.matrix([[12.0]])
+    self.U_min = numpy.matrix([[-12.0]])
+
+
+def main(argv):
+  # Simulate the response of the system to a step input.
+  shooter_data = numpy.genfromtxt('shooter/shooter_data.csv', delimiter=',')
+  shooter = Shooter()
+  simulated_x = []
+  real_x = []
+  x_vel = []
+  initial_x = shooter_data[0, 2]
+  last_x = initial_x
+  for i in xrange(shooter_data.shape[0]):
+    shooter.Update(numpy.matrix([[shooter_data[i, 1]]]))
+    simulated_x.append(shooter.X[0, 0])
+    x_offset = shooter_data[i, 2] - initial_x
+    real_x.append(x_offset)
+    x_vel.append((shooter_data[i, 2] - last_x) * 100.0)
+    last_x = shooter_data[i, 2]
+
+  sim_delay = 1
+# pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
+#            simulated_x, label='Simulation')
+# pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
+# pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
+# pylab.legend()
+# pylab.show()
+
+  # Simulate the closed loop response of the system to a step input.
+  shooter = Shooter()
+  close_loop_x = []
+  close_loop_U = []
+  velocity_goal = 400
+  R = numpy.matrix([[velocity_goal]])
+  goal = False
+  for i in pylab.linspace(0,1.99,200):
+    # Iterate the position up.
+    R = numpy.matrix([[velocity_goal]])
+    U = numpy.clip(shooter.K * (R - shooter.X_hat) +
+                   (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B,
+                   shooter.U_min, shooter.U_max)
+    shooter.UpdateObserver(U)
+    shooter.Update(U)
+    close_loop_x.append(shooter.X[0, 0])
+    close_loop_U.append(U[0, 0])
+    if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)):
+      goal = True
+      print i
+
+  #pylab.plotfile("shooter.csv", (0,1))
+  pylab.plot(pylab.linspace(0,1.99,200), close_loop_U)
+  #pylab.plotfile("shooter.csv", (0,2))
+  pylab.plot(pylab.linspace(0,1.99,200), close_loop_x)
+  pylab.show()
+
+  # Simulate spin down.
+  spin_down_x = [];
+  for _ in xrange(150):
+    U = 0
+    shooter.UpdateObserver(U)
+    shooter.Update(U)
+    spin_down_x.append(shooter.X[0, 0])
+
+  #pylab.plot(range(150), spin_down_x)
+  #pylab.show()
+
+  if len(argv) != 3:
+    print "Expected .h file name and .cc file name"
+  else:
+    loop_writer = control_loop.ControlLoopWriter("Shooter", [shooter])
+    if argv[1][-3:] == '.cc':
+      loop_writer.Write(argv[2], argv[1])
+    else:
+      loop_writer.Write(argv[1], argv[2])
+
+
+if __name__ == '__main__':
+  sys.exit(main(sys.argv))
diff --git a/bot3/control_loops/update_shooter.sh b/bot3/control_loops/update_shooter.sh
index 26e7ae3..db98547 100755
--- a/bot3/control_loops/update_shooter.sh
+++ b/bot3/control_loops/update_shooter.sh
@@ -2,4 +2,4 @@
 #
 # Updates the shooter controller.
 
-../../frc971/control_loops/python/shooter.py shooter/shooter_motor_plant.h shooter/shooter_motor_plant.cc
+./python/shooter.py shooter/shooter_motor_plant.h shooter/shooter_motor_plant.cc
diff --git a/frc971/control_loops/python/control_loop.py b/frc971/control_loops/python/control_loop.py
index 9a8cac8..754ba62 100644
--- a/frc971/control_loops/python/control_loop.py
+++ b/frc971/control_loops/python/control_loop.py
@@ -17,7 +17,7 @@
     if namespaces:
       self._namespaces = namespaces
     else:
-      self._namespaces = ['bot3', 'control_loops']
+      self._namespaces = ['frc971', 'control_loops']
 
     self._namespace_start = '\n'.join(
         ['namespace %s {' % name for name in self._namespaces])
@@ -26,7 +26,7 @@
         ['}  // namespace %s' % name for name in reversed(self._namespaces)])
 
   def _HeaderGuard(self, header_file):
-    return ('BOT3_CONTROL_LOOPS_' +
+    return ('FRC971_CONTROL_LOOPS_' +
             header_file.upper().replace('.', '_').replace('/', '_') +
             '_')
 
@@ -89,7 +89,7 @@
   def WriteCC(self, header_file_name, cc_file):
     """Writes the cc file to the file named cc_file."""
     with open(cc_file, 'w') as fd:
-      fd.write('#include \"bot3/control_loops/%s\"\n' % header_file_name)
+      fd.write('#include \"frc971/control_loops/%s\"\n' % header_file_name)
       fd.write('\n')
       fd.write('#include <vector>\n')
       fd.write('\n')
diff --git a/frc971/control_loops/python/shooter.py b/frc971/control_loops/python/shooter.py
index 27ecc16..83beb90 100755
--- a/frc971/control_loops/python/shooter.py
+++ b/frc971/control_loops/python/shooter.py
@@ -4,57 +4,51 @@
 import sys
 from matplotlib import pylab
 import control_loop
-import slycot
 
 class Shooter(control_loop.ControlLoop):
   def __init__(self):
     super(Shooter, self).__init__("Shooter")
     # Stall Torque in N m
-    self.stall_torque = 2.42211227883219
+    self.stall_torque = 0.49819248
     # Stall Current in Amps
-    self.stall_current = 133
+    self.stall_current = 85
     # Free Speed in RPM
-    self.free_speed = 4650.0
+    self.free_speed = 19300.0 - 1500.0
     # Free Current in Amps
-    self.free_current = 2.7
+    self.free_current = 1.4
     # Moment of inertia of the shooter wheel in kg m^2
     self.J = 0.0032
     # Resistance of the motor, divided by 2 to account for the 2 motors
-    self.R = 12.0 / self.stall_current
+    self.R = 12.0 / self.stall_current / 2
     # Motor velocity constant
     self.Kv = ((self.free_speed / 60.0 * 2.0 * numpy.pi) /
               (12.0 - self.R * self.free_current))
     # Torque constant
     self.Kt = self.stall_torque / self.stall_current
     # Gear ratio
-    self.G = 40.0 / 34.0
+    self.G = 11.0 / 34.0
     # Control loop time step
     self.dt = 0.01
 
     # State feedback matrices
     self.A_continuous = numpy.matrix(
-        [[-self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
+        [[0, 1],
+         [0, -self.Kt / self.Kv / (self.J * self.G * self.G * self.R)]])
     self.B_continuous = numpy.matrix(
-        [[self.Kt / (self.J * self.G * self.R)]])
-    self.C = numpy.matrix([[1]])
+        [[0],
+         [self.Kt / (self.J * self.G * self.R)]])
+    self.C = numpy.matrix([[1, 0]])
     self.D = numpy.matrix([[0]])
 
-    self.A, self.B = self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
-                              self.dt)
+    self.ContinuousToDiscrete(self.A_continuous, self.B_continuous,
+                              self.dt, self.C)
 
-    self.InitializeState()
+    self.PlaceControllerPoles([.6, .981])
 
-    self.PlaceControllerPoles([.8])
-    # LQR stuff for optimization, if needed.
-   #print self.K
-   #self.R_LQR = numpy.matrix([[1.5]])
-   #self.P = slycot.sb02od(1, 1, self.A, self.B, self.C * self.C.T, self.R, 'D')[0]
-   #self.K = (numpy.linalg.inv(self.R_LQR + self.B.T * self.P * self.B)
-   #         * self.B.T * self.P * self.A)
-   #print numpy.linalg.eig(self.A - self.B * self.K)
-
-
-    self.PlaceObserverPoles([0.45])
+    self.rpl = .45
+    self.ipl = 0.07
+    self.PlaceObserverPoles([self.rpl + 1j * self.ipl,
+                             self.rpl - 1j * self.ipl])
 
     self.U_max = numpy.matrix([[12.0]])
     self.U_min = numpy.matrix([[-12.0]])
@@ -78,47 +72,56 @@
     last_x = shooter_data[i, 2]
 
   sim_delay = 1
-# pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
-#            simulated_x, label='Simulation')
-# pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
-# pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
-# pylab.legend()
-# pylab.show()
+  pylab.plot(range(sim_delay, shooter_data.shape[0] + sim_delay),
+             simulated_x, label='Simulation')
+  pylab.plot(range(shooter_data.shape[0]), real_x, label='Reality')
+  pylab.plot(range(shooter_data.shape[0]), x_vel, label='Velocity')
+  pylab.legend()
+  pylab.show()
 
   # Simulate the closed loop response of the system to a step input.
   shooter = Shooter()
   close_loop_x = []
   close_loop_U = []
-  velocity_goal = 400
-  R = numpy.matrix([[velocity_goal]])
-  goal = False
-  for i in pylab.linspace(0,1.99,200):
+  velocity_goal = 300
+  R = numpy.matrix([[0.0], [velocity_goal]])
+  for _ in pylab.linspace(0,1.99,200):
     # Iterate the position up.
-    R = numpy.matrix([[velocity_goal]])
-    U = numpy.clip(shooter.K * (R - shooter.X_hat) +
-                   (numpy.identity(shooter.A.shape[0]) - shooter.A) * R / shooter.B,
+    R = numpy.matrix([[R[0, 0] + 10.5], [velocity_goal]])
+    # Prevents the position goal from going beyond what is necessary.
+    velocity_weight_scalar = 0.35
+    max_reference = (
+        (shooter.U_max[0, 0] - velocity_weight_scalar *
+         (velocity_goal - shooter.X_hat[1, 0]) * shooter.K[0, 1]) /
+         shooter.K[0, 0] +
+         shooter.X_hat[0, 0])
+    min_reference = (
+        (shooter.U_min[0, 0] - velocity_weight_scalar *
+         (velocity_goal - shooter.X_hat[1, 0]) * shooter.K[0, 1]) /
+         shooter.K[0, 0] +
+         shooter.X_hat[0, 0])
+    R[0, 0] = numpy.clip(R[0, 0], min_reference, max_reference)
+    U = numpy.clip(shooter.K * (R - shooter.X_hat),
                    shooter.U_min, shooter.U_max)
     shooter.UpdateObserver(U)
     shooter.Update(U)
-    close_loop_x.append(shooter.X[0, 0])
+    close_loop_x.append(shooter.X[1, 0])
     close_loop_U.append(U[0, 0])
-    if (abs(R[0, 0] - shooter.X[0, 0]) < R[0, 0]* 0.01 and (not goal)):
-      goal = True
-      print i
 
   #pylab.plotfile("shooter.csv", (0,1))
-  pylab.plot(pylab.linspace(0,1.99,200), close_loop_U)
+  #pylab.plot(pylab.linspace(0,1.99,200), close_loop_U, 'ro')
   #pylab.plotfile("shooter.csv", (0,2))
-  pylab.plot(pylab.linspace(0,1.99,200), close_loop_x)
+  pylab.plot(pylab.linspace(0,1.99,200), close_loop_x, 'ro')
   pylab.show()
 
   # Simulate spin down.
   spin_down_x = [];
+  R = numpy.matrix([[50.0], [0.0]])
   for _ in xrange(150):
     U = 0
     shooter.UpdateObserver(U)
     shooter.Update(U)
-    spin_down_x.append(shooter.X[0, 0])
+    spin_down_x.append(shooter.X[1, 0])
 
   #pylab.plot(range(150), spin_down_x)
   #pylab.show()