| #include "frc971/zeroing/continuous_absolute_encoder.h" |
| |
| #include <cmath> |
| #include <numeric> |
| |
| #include "absl/log/check.h" |
| #include "absl/log/log.h" |
| |
| #include "aos/containers/error_list.h" |
| #include "frc971/zeroing/wrap.h" |
| |
| namespace frc971::zeroing { |
| |
| ContinuousAbsoluteEncoderZeroingEstimator:: |
| ContinuousAbsoluteEncoderZeroingEstimator( |
| const constants::ContinuousAbsoluteEncoderZeroingConstants &constants) |
| : constants_(constants), move_detector_(constants_.moving_buffer_size) { |
| relative_to_absolute_offset_samples_.reserve(constants_.average_filter_size); |
| Reset(); |
| } |
| |
| void ContinuousAbsoluteEncoderZeroingEstimator::Reset() { |
| zeroed_ = false; |
| error_ = false; |
| first_offset_ = 0.0; |
| offset_ = 0.0; |
| samples_idx_ = 0; |
| position_ = 0.0; |
| nan_samples_ = 0; |
| relative_to_absolute_offset_samples_.clear(); |
| move_detector_.Reset(); |
| } |
| |
| // The math here is a bit backwards, but I think it'll be less error prone that |
| // way and more similar to the version with a pot as well. |
| // |
| // We start by unwrapping the absolute encoder using the relative encoder. This |
| // puts us in a non-wrapping space and lets us average a bit easier. From |
| // there, we can compute an offset and wrap ourselves back such that we stay |
| // close to the middle value. |
| // |
| // To guard against the robot moving while updating estimates, buffer a number |
| // of samples and check that the buffered samples are not different than the |
| // zeroing threshold. At any point that the samples differ too much, do not |
| // update estimates based on those samples. |
| void ContinuousAbsoluteEncoderZeroingEstimator::UpdateEstimate( |
| const AbsolutePosition &info) { |
| // Check for Abs Encoder NaN value that would mess up the rest of the zeroing |
| // code below. NaN values are given when the Absolute Encoder is disconnected. |
| if (::std::isnan(info.absolute_encoder())) { |
| if (zeroed_) { |
| VLOG(1) << "NAN on absolute encoder."; |
| errors_.Set(ZeroingError::LOST_ABSOLUTE_ENCODER); |
| error_ = true; |
| } else { |
| ++nan_samples_; |
| VLOG(1) << "NAN on absolute encoder while zeroing " << nan_samples_; |
| if (nan_samples_ >= constants_.average_filter_size) { |
| errors_.Set(ZeroingError::LOST_ABSOLUTE_ENCODER); |
| error_ = true; |
| zeroed_ = true; |
| } |
| } |
| // Throw some dummy values in for now. |
| filtered_absolute_encoder_ = info.absolute_encoder(); |
| position_ = offset_ + info.encoder(); |
| return; |
| } |
| |
| const bool moving = move_detector_.Update(info, constants_.moving_buffer_size, |
| constants_.zeroing_threshold); |
| |
| if (!moving) { |
| const PositionStruct &sample = move_detector_.GetSample(); |
| |
| // adjusted_* numbers are nominally in the desired output frame. |
| const double adjusted_absolute_encoder = |
| sample.absolute_encoder - constants_.measured_absolute_position; |
| |
| // Note: If are are near the breakpoint of the absolute encoder, this number |
| // will be jitter between numbers that are ~one_revolution_distance apart. |
| // For that reason, we rewrap it so that we are not near that boundary. |
| const double relative_to_absolute_offset = |
| adjusted_absolute_encoder - sample.encoder; |
| |
| // To avoid the aforementioned jitter, choose a base value to use for |
| // wrapping. When we have no prior samples, just use the current offset. |
| // Otherwise, we use an arbitrary prior offset (the stored offsets will all |
| // already be wrapped). |
| const double relative_to_absolute_offset_wrap_base = |
| relative_to_absolute_offset_samples_.size() == 0 |
| ? relative_to_absolute_offset |
| : relative_to_absolute_offset_samples_[0]; |
| |
| const double relative_to_absolute_offset_wrapped = |
| UnWrap(relative_to_absolute_offset_wrap_base, |
| relative_to_absolute_offset, constants_.one_revolution_distance); |
| |
| const size_t relative_to_absolute_offset_samples_size = |
| relative_to_absolute_offset_samples_.size(); |
| if (relative_to_absolute_offset_samples_size < |
| constants_.average_filter_size) { |
| relative_to_absolute_offset_samples_.push_back( |
| relative_to_absolute_offset_wrapped); |
| } else { |
| relative_to_absolute_offset_samples_[samples_idx_] = |
| relative_to_absolute_offset_wrapped; |
| } |
| samples_idx_ = (samples_idx_ + 1) % constants_.average_filter_size; |
| |
| // Compute the average offset between the absolute encoder and relative |
| // encoder. Because we just pushed a value, the size() will never be zero. |
| offset_ = |
| ::std::accumulate(relative_to_absolute_offset_samples_.begin(), |
| relative_to_absolute_offset_samples_.end(), 0.0) / |
| relative_to_absolute_offset_samples_.size(); |
| |
| // To provide a value that can be used to estimate the |
| // measured_absolute_position when zeroing, we just need to output the |
| // current absolute encoder value. We could make use of the averaging |
| // implicit in offset_ to reduce the noise on this slightly. |
| filtered_absolute_encoder_ = sample.absolute_encoder; |
| |
| if (offset_ready()) { |
| if (!zeroed_) { |
| first_offset_ = offset_; |
| } |
| |
| if (::std::abs(first_offset_ - offset_) > |
| constants_.allowable_encoder_error * |
| constants_.one_revolution_distance) { |
| VLOG(1) << "Offset moved too far. Initial: " << first_offset_ |
| << ", current " << offset_ << ", allowable change: " |
| << constants_.allowable_encoder_error * |
| constants_.one_revolution_distance; |
| errors_.Set(ZeroingError::OFFSET_MOVED_TOO_FAR); |
| error_ = true; |
| } |
| |
| zeroed_ = true; |
| } |
| } |
| |
| // Update the position. Wrap it to reflect the fact that we do not have |
| // sufficient information to disambiguate which revolution we are on (also, |
| // since this value is primarily meant for debugging, this makes it easier to |
| // see that the device is actually at zero without having to divide by 2 * |
| // pi). |
| position_ = |
| Wrap(0.0, offset_ + info.encoder(), constants_.one_revolution_distance); |
| } |
| |
| flatbuffers::Offset<ContinuousAbsoluteEncoderZeroingEstimator::State> |
| ContinuousAbsoluteEncoderZeroingEstimator::GetEstimatorState( |
| flatbuffers::FlatBufferBuilder *fbb) const { |
| flatbuffers::Offset<flatbuffers::Vector<ZeroingError>> errors_offset = |
| errors_.ToFlatbuffer(fbb); |
| |
| State::Builder builder(*fbb); |
| builder.add_error(error_); |
| builder.add_zeroed(zeroed_); |
| builder.add_position(position_); |
| builder.add_absolute_position(filtered_absolute_encoder_); |
| builder.add_errors(errors_offset); |
| return builder.Finish(); |
| } |
| |
| void ContinuousAbsoluteEncoderZeroingEstimator::GetEstimatorState( |
| AbsoluteEncoderEstimatorStateStatic *fbs) const { |
| errors_.ToStaticFlatbuffer(fbs->add_errors()); |
| |
| fbs->set_error(error_); |
| fbs->set_zeroed(zeroed_); |
| fbs->set_position(position_); |
| fbs->set_absolute_position(filtered_absolute_encoder_); |
| } |
| |
| } // namespace frc971::zeroing |