| #include "y2022/vision/blob_detector.h" |
| |
| #include <opencv2/imgproc.hpp> |
| |
| #include "aos/network/team_number.h" |
| |
| DEFINE_uint64(green_delta, 50, |
| "Required difference between green pixels vs. red and blue"); |
| DEFINE_bool(use_outdoors, false, |
| "If true, change thresholds to handle outdoor illumination"); |
| |
| namespace y2022 { |
| namespace vision { |
| |
| cv::Mat BlobDetector::ThresholdImage(cv::Mat rgb_image) { |
| cv::Mat gray_image(cv::Size(rgb_image.cols, rgb_image.rows), CV_8UC1); |
| for (int row = 0; row < rgb_image.rows; row++) { |
| for (int col = 0; col < rgb_image.cols; col++) { |
| cv::Vec3b pixel = rgb_image.at<cv::Vec3b>(row, col); |
| uint8_t blue = pixel.val[0]; |
| uint8_t green = pixel.val[1]; |
| uint8_t red = pixel.val[2]; |
| // Simple filter that looks for green pixels sufficiently brigher than |
| // red and blue |
| if ((green > blue + 30) && (green > red + 50)) { |
| gray_image.at<uint8_t>(row, col) = 255; |
| } else { |
| gray_image.at<uint8_t>(row, col) = 0; |
| } |
| } |
| } |
| |
| return gray_image; |
| } |
| |
| std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs( |
| cv::Mat binarized_image) { |
| // find the contours (blob outlines) |
| std::vector<std::vector<cv::Point>> contours; |
| std::vector<cv::Vec4i> hierarchy; |
| cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP, |
| cv::CHAIN_APPROX_SIMPLE); |
| |
| return contours; |
| } |
| |
| // Filter blobs to get rid of noise, too large items, etc. |
| std::vector<std::vector<cv::Point>> BlobDetector::FilterBlobs( |
| std::vector<std::vector<cv::Point>> blobs) { |
| // TODO: Put in some filters |
| |
| std::vector<std::vector<cv::Point>> filtered_blobs; |
| for (auto blob : blobs) { |
| // for now, let's remove all blobs that are at the bottom of the image |
| if (blob[0].y < 400) { |
| filtered_blobs.push_back(blob); |
| } else { |
| // LOG(INFO) << "Found and removed blob"; |
| } |
| } |
| return filtered_blobs; |
| } |
| |
| void BlobDetector::DrawBlobs( |
| cv::Mat view_image, std::vector<std::vector<cv::Point>> unfiltered_blobs, |
| std::vector<std::vector<cv::Point>> filtered_blobs) { |
| CHECK_GT(view_image.cols, 0); |
| if (unfiltered_blobs.size() > 0) { |
| // Draw blobs unfilled, with red color border |
| drawContours(view_image, unfiltered_blobs, -1, cv::Scalar(0, 0, 255), 0); |
| } |
| |
| drawContours(view_image, filtered_blobs, -1, cv::Scalar(0, 255, 0), |
| cv::FILLED); |
| } |
| |
| std::vector<std::vector<cv::Point>> BlobDetector::ComputeStats( |
| std::vector<std::vector<cv::Point>> blobs) { |
| // Placeholder for now for this |
| // TODO<Jim>: need to compute stats on blobs, like centroid, aspect |
| // ratio, bounding box |
| return blobs; |
| } |
| |
| void BlobDetector::ExtractBlobs( |
| cv::Mat rgb_image, cv::Mat binarized_image, cv::Mat blob_image, |
| std::vector<std::vector<cv::Point>> &filtered_blobs, |
| std::vector<std::vector<cv::Point>> &unfiltered_blobs, |
| std::vector<std::vector<cv::Point>> &blob_stats) { |
| binarized_image = ThresholdImage(rgb_image); |
| unfiltered_blobs = FindBlobs(binarized_image); |
| filtered_blobs = FilterBlobs(unfiltered_blobs); |
| DrawBlobs(blob_image, unfiltered_blobs, filtered_blobs); |
| blob_stats = ComputeStats(filtered_blobs); |
| } |
| |
| } // namespace vision |
| } // namespace y2022 |