blob: bf5afd7f0c3caa0c048a127e947ac30533aab12c [file] [log] [blame]
#include "y2022/vision/blob_detector.h"
#include <opencv2/imgproc.hpp>
#include "aos/network/team_number.h"
DEFINE_uint64(green_delta, 50,
"Required difference between green pixels vs. red and blue");
DEFINE_bool(use_outdoors, false,
"If true, change thresholds to handle outdoor illumination");
namespace y2022 {
namespace vision {
cv::Mat BlobDetector::ThresholdImage(cv::Mat rgb_image) {
cv::Mat gray_image(cv::Size(rgb_image.cols, rgb_image.rows), CV_8UC1);
for (int row = 0; row < rgb_image.rows; row++) {
for (int col = 0; col < rgb_image.cols; col++) {
cv::Vec3b pixel = rgb_image.at<cv::Vec3b>(row, col);
uint8_t blue = pixel.val[0];
uint8_t green = pixel.val[1];
uint8_t red = pixel.val[2];
// Simple filter that looks for green pixels sufficiently brigher than
// red and blue
if ((green > blue + 30) && (green > red + 50)) {
gray_image.at<uint8_t>(row, col) = 255;
} else {
gray_image.at<uint8_t>(row, col) = 0;
}
}
}
return gray_image;
}
std::vector<std::vector<cv::Point>> BlobDetector::FindBlobs(
cv::Mat binarized_image) {
// find the contours (blob outlines)
std::vector<std::vector<cv::Point>> contours;
std::vector<cv::Vec4i> hierarchy;
cv::findContours(binarized_image, contours, hierarchy, cv::RETR_CCOMP,
cv::CHAIN_APPROX_SIMPLE);
return contours;
}
// Filter blobs to get rid of noise, too large items, etc.
std::vector<std::vector<cv::Point>> BlobDetector::FilterBlobs(
std::vector<std::vector<cv::Point>> blobs) {
// TODO: Put in some filters
std::vector<std::vector<cv::Point>> filtered_blobs;
for (auto blob : blobs) {
// for now, let's remove all blobs that are at the bottom of the image
if (blob[0].y < 400) {
filtered_blobs.push_back(blob);
} else {
// LOG(INFO) << "Found and removed blob";
}
}
return filtered_blobs;
}
void BlobDetector::DrawBlobs(
cv::Mat view_image, std::vector<std::vector<cv::Point>> unfiltered_blobs,
std::vector<std::vector<cv::Point>> filtered_blobs) {
CHECK_GT(view_image.cols, 0);
if (unfiltered_blobs.size() > 0) {
// Draw blobs unfilled, with red color border
drawContours(view_image, unfiltered_blobs, -1, cv::Scalar(0, 0, 255), 0);
}
drawContours(view_image, filtered_blobs, -1, cv::Scalar(0, 255, 0),
cv::FILLED);
}
std::vector<std::vector<cv::Point>> BlobDetector::ComputeStats(
std::vector<std::vector<cv::Point>> blobs) {
// Placeholder for now for this
// TODO<Jim>: need to compute stats on blobs, like centroid, aspect
// ratio, bounding box
return blobs;
}
void BlobDetector::ExtractBlobs(
cv::Mat rgb_image, cv::Mat binarized_image, cv::Mat blob_image,
std::vector<std::vector<cv::Point>> &filtered_blobs,
std::vector<std::vector<cv::Point>> &unfiltered_blobs,
std::vector<std::vector<cv::Point>> &blob_stats) {
binarized_image = ThresholdImage(rgb_image);
unfiltered_blobs = FindBlobs(binarized_image);
filtered_blobs = FilterBlobs(unfiltered_blobs);
DrawBlobs(blob_image, unfiltered_blobs, filtered_blobs);
blob_stats = ComputeStats(filtered_blobs);
}
} // namespace vision
} // namespace y2022