| /* mpn_powm -- Compute R = U^E mod M. |
| |
| Contributed to the GNU project by Torbjorn Granlund. |
| |
| THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES. IT IS ONLY |
| SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES. IN FACT, IT IS ALMOST |
| GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE. |
| |
| Copyright 2007-2012, 2019 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| |
| /* |
| BASIC ALGORITHM, Compute U^E mod M, where M < B^n is odd. |
| |
| 1. W <- U |
| |
| 2. T <- (B^n * U) mod M Convert to REDC form |
| |
| 3. Compute table U^1, U^3, U^5... of E-dependent size |
| |
| 4. While there are more bits in E |
| W <- power left-to-right base-k |
| |
| |
| TODO: |
| |
| * Make getbits a macro, thereby allowing it to update the index operand. |
| That will simplify the code using getbits. (Perhaps make getbits' sibling |
| getbit then have similar form, for symmetry.) |
| |
| * Write an itch function. Or perhaps get rid of tp parameter since the huge |
| pp area is allocated locally anyway? |
| |
| * Choose window size without looping. (Superoptimize or think(tm).) |
| |
| * Handle small bases with initial, reduction-free exponentiation. |
| |
| * Call new division functions, not mpn_tdiv_qr. |
| |
| * Consider special code for one-limb M. |
| |
| * How should we handle the redc1/redc2/redc_n choice? |
| - redc1: T(binvert_1limb) + e * (n) * (T(mullo-1x1) + n*T(addmul_1)) |
| - redc2: T(binvert_2limbs) + e * (n/2) * (T(mullo-2x2) + n*T(addmul_2)) |
| - redc_n: T(binvert_nlimbs) + e * (T(mullo-nxn) + T(M(n))) |
| This disregards the addmul_N constant term, but we could think of |
| that as part of the respective mullo. |
| |
| * When U (the base) is small, we should start the exponentiation with plain |
| operations, then convert that partial result to REDC form. |
| |
| * When U is just one limb, should it be handled without the k-ary tricks? |
| We could keep a factor of B^n in W, but use U' = BU as base. After |
| multiplying by this (pseudo two-limb) number, we need to multiply by 1/B |
| mod M. |
| */ |
| |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| #undef MPN_REDC_0 |
| #define MPN_REDC_0(rp, up, mp, invm) \ |
| do { \ |
| mp_limb_t p1, r0, u0, _dummy; \ |
| u0 = *(up); \ |
| umul_ppmm (p1, _dummy, *(mp), (u0 * (invm)) & GMP_NUMB_MASK); \ |
| ASSERT (((u0 + _dummy) & GMP_NUMB_MASK) == 0); \ |
| p1 += (u0 != 0); \ |
| r0 = (up)[1] + p1; \ |
| if (p1 > r0) \ |
| r0 -= *(mp); \ |
| *(rp) = r0; \ |
| } while (0) |
| |
| #undef MPN_REDC_1 |
| #if HAVE_NATIVE_mpn_sbpi1_bdiv_r |
| #define MPN_REDC_1(rp, up, mp, n, invm) \ |
| do { \ |
| mp_limb_t cy; \ |
| cy = mpn_sbpi1_bdiv_r (up, 2 * n, mp, n, invm); \ |
| if (cy != 0) \ |
| mpn_sub_n (rp, up + n, mp, n); \ |
| else \ |
| MPN_COPY (rp, up + n, n); \ |
| } while (0) |
| #else |
| #define MPN_REDC_1(rp, up, mp, n, invm) \ |
| do { \ |
| mp_limb_t cy; \ |
| cy = mpn_redc_1 (rp, up, mp, n, invm); \ |
| if (cy != 0) \ |
| mpn_sub_n (rp, rp, mp, n); \ |
| } while (0) |
| #endif |
| |
| #undef MPN_REDC_2 |
| #define MPN_REDC_2(rp, up, mp, n, mip) \ |
| do { \ |
| mp_limb_t cy; \ |
| cy = mpn_redc_2 (rp, up, mp, n, mip); \ |
| if (cy != 0) \ |
| mpn_sub_n (rp, rp, mp, n); \ |
| } while (0) |
| |
| #if HAVE_NATIVE_mpn_addmul_2 || HAVE_NATIVE_mpn_redc_2 |
| #define WANT_REDC_2 1 |
| #endif |
| |
| #define getbit(p,bi) \ |
| ((p[(bi - 1) / GMP_LIMB_BITS] >> (bi - 1) % GMP_LIMB_BITS) & 1) |
| |
| static inline mp_limb_t |
| getbits (const mp_limb_t *p, mp_bitcnt_t bi, int nbits) |
| { |
| int nbits_in_r; |
| mp_limb_t r; |
| mp_size_t i; |
| |
| if (bi < nbits) |
| { |
| return p[0] & (((mp_limb_t) 1 << bi) - 1); |
| } |
| else |
| { |
| bi -= nbits; /* bit index of low bit to extract */ |
| i = bi / GMP_NUMB_BITS; /* word index of low bit to extract */ |
| bi %= GMP_NUMB_BITS; /* bit index in low word */ |
| r = p[i] >> bi; /* extract (low) bits */ |
| nbits_in_r = GMP_NUMB_BITS - bi; /* number of bits now in r */ |
| if (nbits_in_r < nbits) /* did we get enough bits? */ |
| r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */ |
| return r & (((mp_limb_t) 1 << nbits) - 1); |
| } |
| } |
| |
| static inline int |
| win_size (mp_bitcnt_t eb) |
| { |
| int k; |
| static mp_bitcnt_t x[] = {0,7,25,81,241,673,1793,4609,11521,28161,~(mp_bitcnt_t)0}; |
| for (k = 1; eb > x[k]; k++) |
| ; |
| return k; |
| } |
| |
| /* Convert U to REDC form, U_r = B^n * U mod M */ |
| static void |
| redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n) |
| { |
| mp_ptr tp, qp; |
| TMP_DECL; |
| TMP_MARK; |
| |
| TMP_ALLOC_LIMBS_2 (tp, un + n, qp, un + 1); |
| |
| MPN_ZERO (tp, n); |
| MPN_COPY (tp + n, up, un); |
| mpn_tdiv_qr (qp, rp, 0L, tp, un + n, mp, n); |
| TMP_FREE; |
| } |
| |
| /* rp[n-1..0] = bp[bn-1..0] ^ ep[en-1..0] mod mp[n-1..0] |
| Requires that mp[n-1..0] is odd. |
| Requires that ep[en-1..0] is > 1. |
| Uses scratch space at tp of MAX(mpn_binvert_itch(n),2n) limbs. */ |
| void |
| mpn_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn, |
| mp_srcptr ep, mp_size_t en, |
| mp_srcptr mp, mp_size_t n, mp_ptr tp) |
| { |
| mp_limb_t ip[2], *mip; |
| int cnt; |
| mp_bitcnt_t ebi; |
| int windowsize, this_windowsize; |
| mp_limb_t expbits; |
| mp_ptr pp, this_pp; |
| long i; |
| TMP_DECL; |
| |
| ASSERT (en > 1 || (en == 1 && ep[0] > 1)); |
| ASSERT (n >= 1 && ((mp[0] & 1) != 0)); |
| |
| TMP_MARK; |
| |
| MPN_SIZEINBASE_2EXP(ebi, ep, en, 1); |
| |
| #if 0 |
| if (bn < n) |
| { |
| /* Do the first few exponent bits without mod reductions, |
| until the result is greater than the mod argument. */ |
| for (;;) |
| { |
| mpn_sqr (tp, this_pp, tn); |
| tn = tn * 2 - 1, tn += tp[tn] != 0; |
| if (getbit (ep, ebi) != 0) |
| mpn_mul (..., tp, tn, bp, bn); |
| ebi--; |
| } |
| } |
| #endif |
| |
| windowsize = win_size (ebi); |
| |
| #if WANT_REDC_2 |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD)) |
| { |
| mip = ip; |
| binvert_limb (mip[0], mp[0]); |
| mip[0] = -mip[0]; |
| } |
| else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD)) |
| { |
| mip = ip; |
| mpn_binvert (mip, mp, 2, tp); |
| mip[0] = -mip[0]; mip[1] = ~mip[1]; |
| } |
| #else |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD)) |
| { |
| mip = ip; |
| binvert_limb (mip[0], mp[0]); |
| mip[0] = -mip[0]; |
| } |
| #endif |
| else |
| { |
| mip = TMP_ALLOC_LIMBS (n); |
| mpn_binvert (mip, mp, n, tp); |
| } |
| |
| pp = TMP_ALLOC_LIMBS (n << (windowsize - 1)); |
| |
| this_pp = pp; |
| redcify (this_pp, bp, bn, mp, n); |
| |
| /* Store b^2 at rp. */ |
| mpn_sqr (tp, this_pp, n); |
| #if 0 |
| if (n == 1) { |
| MPN_REDC_0 (rp, tp, mp, mip[0]); |
| } else |
| #endif |
| #if WANT_REDC_2 |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD)) |
| MPN_REDC_1 (rp, tp, mp, n, mip[0]); |
| else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD)) |
| MPN_REDC_2 (rp, tp, mp, n, mip); |
| #else |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD)) |
| MPN_REDC_1 (rp, tp, mp, n, mip[0]); |
| #endif |
| else |
| mpn_redc_n (rp, tp, mp, n, mip); |
| |
| /* Precompute odd powers of b and put them in the temporary area at pp. */ |
| for (i = (1 << (windowsize - 1)) - 1; i > 0; i--) |
| #if 1 |
| if (n == 1) { |
| umul_ppmm((tp)[1], *(tp), *(this_pp), *(rp)); |
| ++this_pp ; |
| MPN_REDC_0 (this_pp, tp, mp, mip[0]); |
| } else |
| #endif |
| { |
| mpn_mul_n (tp, this_pp, rp, n); |
| this_pp += n; |
| #if WANT_REDC_2 |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD)) |
| MPN_REDC_1 (this_pp, tp, mp, n, mip[0]); |
| else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD)) |
| MPN_REDC_2 (this_pp, tp, mp, n, mip); |
| #else |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD)) |
| MPN_REDC_1 (this_pp, tp, mp, n, mip[0]); |
| #endif |
| else |
| mpn_redc_n (this_pp, tp, mp, n, mip); |
| } |
| |
| expbits = getbits (ep, ebi, windowsize); |
| if (ebi < windowsize) |
| ebi = 0; |
| else |
| ebi -= windowsize; |
| |
| count_trailing_zeros (cnt, expbits); |
| ebi += cnt; |
| expbits >>= cnt; |
| |
| MPN_COPY (rp, pp + n * (expbits >> 1), n); |
| |
| #define INNERLOOP \ |
| while (ebi != 0) \ |
| { \ |
| while (getbit (ep, ebi) == 0) \ |
| { \ |
| MPN_SQR (tp, rp, n); \ |
| MPN_REDUCE (rp, tp, mp, n, mip); \ |
| if (--ebi == 0) \ |
| goto done; \ |
| } \ |
| \ |
| /* The next bit of the exponent is 1. Now extract the largest \ |
| block of bits <= windowsize, and such that the least \ |
| significant bit is 1. */ \ |
| \ |
| expbits = getbits (ep, ebi, windowsize); \ |
| this_windowsize = windowsize; \ |
| if (ebi < windowsize) \ |
| { \ |
| this_windowsize -= windowsize - ebi; \ |
| ebi = 0; \ |
| } \ |
| else \ |
| ebi -= windowsize; \ |
| \ |
| count_trailing_zeros (cnt, expbits); \ |
| this_windowsize -= cnt; \ |
| ebi += cnt; \ |
| expbits >>= cnt; \ |
| \ |
| do \ |
| { \ |
| MPN_SQR (tp, rp, n); \ |
| MPN_REDUCE (rp, tp, mp, n, mip); \ |
| } \ |
| while (--this_windowsize != 0); \ |
| \ |
| MPN_MUL_N (tp, rp, pp + n * (expbits >> 1), n); \ |
| MPN_REDUCE (rp, tp, mp, n, mip); \ |
| } |
| |
| |
| if (n == 1) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) umul_ppmm((r)[1], *(r), *(a), *(b)) |
| #define MPN_SQR(r,a,n) umul_ppmm((r)[1], *(r), *(a), *(a)) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_0(rp, tp, mp, mip[0]) |
| INNERLOOP; |
| } |
| else |
| #if WANT_REDC_2 |
| if (REDC_1_TO_REDC_2_THRESHOLD < MUL_TOOM22_THRESHOLD) |
| { |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD)) |
| { |
| if (REDC_1_TO_REDC_2_THRESHOLD < SQR_BASECASE_THRESHOLD |
| || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| } |
| else if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD)) |
| { |
| if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD |
| || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| } |
| else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| } |
| else |
| { |
| if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD)) |
| { |
| if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD |
| || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| } |
| else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_2 (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| } |
| |
| #else /* WANT_REDC_2 */ |
| |
| if (REDC_1_TO_REDC_N_THRESHOLD < MUL_TOOM22_THRESHOLD) |
| { |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD)) |
| { |
| if (REDC_1_TO_REDC_N_THRESHOLD < SQR_BASECASE_THRESHOLD |
| || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| } |
| else if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD)) |
| { |
| if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD |
| || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| } |
| else |
| { |
| if (BELOW_THRESHOLD (n, MUL_TOOM22_THRESHOLD)) |
| { |
| if (MUL_TOOM22_THRESHOLD < SQR_BASECASE_THRESHOLD |
| || BELOW_THRESHOLD (n, SQR_BASECASE_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_mul_basecase (r,a,n,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_basecase (r,a,n,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr_basecase (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| } |
| else if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD)) |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) MPN_REDC_1 (rp, tp, mp, n, mip[0]) |
| INNERLOOP; |
| } |
| else |
| { |
| #undef MPN_MUL_N |
| #undef MPN_SQR |
| #undef MPN_REDUCE |
| #define MPN_MUL_N(r,a,b,n) mpn_mul_n (r,a,b,n) |
| #define MPN_SQR(r,a,n) mpn_sqr (r,a,n) |
| #define MPN_REDUCE(rp,tp,mp,n,mip) mpn_redc_n (rp, tp, mp, n, mip) |
| INNERLOOP; |
| } |
| } |
| #endif /* WANT_REDC_2 */ |
| |
| done: |
| |
| MPN_COPY (tp, rp, n); |
| MPN_ZERO (tp + n, n); |
| |
| #if WANT_REDC_2 |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_2_THRESHOLD)) |
| MPN_REDC_1 (rp, tp, mp, n, mip[0]); |
| else if (BELOW_THRESHOLD (n, REDC_2_TO_REDC_N_THRESHOLD)) |
| MPN_REDC_2 (rp, tp, mp, n, mip); |
| #else |
| if (BELOW_THRESHOLD (n, REDC_1_TO_REDC_N_THRESHOLD)) |
| MPN_REDC_1 (rp, tp, mp, n, mip[0]); |
| #endif |
| else |
| mpn_redc_n (rp, tp, mp, n, mip); |
| |
| if (mpn_cmp (rp, mp, n) >= 0) |
| mpn_sub_n (rp, rp, mp, n); |
| |
| TMP_FREE; |
| } |