| /* mpn_fib2m -- calculate Fibonacci numbers, modulo m. |
| |
| Contributed to the GNU project by Marco Bodrato, based on the previous |
| fib2_ui.c file. |
| |
| THE FUNCTIONS IN THIS FILE ARE FOR INTERNAL USE ONLY. THEY'RE ALMOST |
| CERTAIN TO BE SUBJECT TO INCOMPATIBLE CHANGES OR DISAPPEAR COMPLETELY IN |
| FUTURE GNU MP RELEASES. |
| |
| Copyright 2001, 2002, 2005, 2009, 2018 Free Software Foundation, Inc. |
| |
| This file is part of the GNU MP Library. |
| |
| The GNU MP Library is free software; you can redistribute it and/or modify |
| it under the terms of either: |
| |
| * the GNU Lesser General Public License as published by the Free |
| Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| or |
| |
| * the GNU General Public License as published by the Free Software |
| Foundation; either version 2 of the License, or (at your option) any |
| later version. |
| |
| or both in parallel, as here. |
| |
| The GNU MP Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| for more details. |
| |
| You should have received copies of the GNU General Public License and the |
| GNU Lesser General Public License along with the GNU MP Library. If not, |
| see https://www.gnu.org/licenses/. */ |
| |
| #include <stdio.h> |
| #include "gmp-impl.h" |
| #include "longlong.h" |
| |
| |
| /* Stores |{ap,n}-{bp,n}| in {rp,n}, |
| returns the sign of {ap,n}-{bp,n}. */ |
| static int |
| abs_sub_n (mp_ptr rp, mp_srcptr ap, mp_srcptr bp, mp_size_t n) |
| { |
| mp_limb_t x, y; |
| while (--n >= 0) |
| { |
| x = ap[n]; |
| y = bp[n]; |
| if (x != y) |
| { |
| ++n; |
| if (x > y) |
| { |
| ASSERT_NOCARRY (mpn_sub_n (rp, ap, bp, n)); |
| return 1; |
| } |
| else |
| { |
| ASSERT_NOCARRY (mpn_sub_n (rp, bp, ap, n)); |
| return -1; |
| } |
| } |
| rp[n] = 0; |
| } |
| return 0; |
| } |
| |
| /* Store F[n] at fp and F[n-1] at f1p. Both are computed modulo m. |
| fp and f1p should have room for mn*2+1 limbs. |
| |
| The sign of one or both the values may be flipped (n-F, instead of F), |
| the return value is 0 (zero) if the signs are coherent (both positive |
| or both negative) and 1 (one) otherwise. |
| |
| Notes: |
| |
| In F[2k+1] with k even, +2 is applied to 4*F[k]^2 just by ORing into the |
| low limb. |
| |
| In F[2k+1] with k odd, -2 is applied to F[k-1]^2 just by ORing into the |
| low limb. |
| |
| TODO: Should {tp, 2 * mn} be passed as a scratch pointer? |
| Should the call to mpn_fib2_ui() obtain (up to) 2*mn limbs? |
| */ |
| |
| int |
| mpn_fib2m (mp_ptr fp, mp_ptr f1p, mp_srcptr np, mp_size_t nn, mp_srcptr mp, mp_size_t mn) |
| { |
| unsigned long nfirst; |
| mp_limb_t nh; |
| mp_bitcnt_t nbi; |
| mp_size_t sn, fn; |
| int fcnt, ncnt; |
| |
| ASSERT (! MPN_OVERLAP_P (fp, MAX(2*mn+1,5), f1p, MAX(2*mn+1,5))); |
| ASSERT (nn > 0 && np[nn - 1] != 0); |
| |
| /* Estimate the maximal n such that fibonacci(n) fits in mn limbs. */ |
| #if GMP_NUMB_BITS % 16 == 0 |
| if (UNLIKELY (ULONG_MAX / (23 * (GMP_NUMB_BITS / 16)) <= mn)) |
| nfirst = ULONG_MAX; |
| else |
| nfirst = mn * (23 * (GMP_NUMB_BITS / 16)); |
| #else |
| { |
| mp_bitcnt_t mbi; |
| mbi = (mp_bitcnt_t) mn * GMP_NUMB_BITS; |
| |
| if (UNLIKELY (ULONG_MAX / 23 < mbi)) |
| { |
| if (UNLIKELY (ULONG_MAX / 23 * 16 <= mbi)) |
| nfirst = ULONG_MAX; |
| else |
| nfirst = mbi / 16 * 23; |
| } |
| else |
| nfirst = mbi * 23 / 16; |
| } |
| #endif |
| |
| sn = nn - 1; |
| nh = np[sn]; |
| count_leading_zeros (ncnt, nh); |
| count_leading_zeros (fcnt, nfirst); |
| |
| if (fcnt >= ncnt) |
| { |
| ncnt = fcnt - ncnt; |
| nh >>= ncnt; |
| } |
| else if (sn > 0) |
| { |
| ncnt -= fcnt; |
| nh <<= ncnt; |
| ncnt = GMP_NUMB_BITS - ncnt; |
| --sn; |
| nh |= np[sn] >> ncnt; |
| } |
| else |
| ncnt = 0; |
| |
| nbi = sn * GMP_NUMB_BITS + ncnt; |
| if (nh > nfirst) |
| { |
| nh >>= 1; |
| ++nbi; |
| } |
| |
| ASSERT (nh <= nfirst); |
| /* Take a starting pair from mpn_fib2_ui. */ |
| fn = mpn_fib2_ui (fp, f1p, nh); |
| MPN_ZERO (fp + fn, mn - fn); |
| MPN_ZERO (f1p + fn, mn - fn); |
| |
| if (nbi == 0) |
| { |
| if (fn == mn) |
| { |
| mp_limb_t qp[2]; |
| mpn_tdiv_qr (qp, fp, 0, fp, fn, mp, mn); |
| mpn_tdiv_qr (qp, f1p, 0, f1p, fn, mp, mn); |
| } |
| |
| return 0; |
| } |
| else |
| { |
| mp_ptr tp; |
| unsigned pb = nh & 1; |
| int neg; |
| TMP_DECL; |
| |
| TMP_MARK; |
| |
| tp = TMP_ALLOC_LIMBS (2 * mn + (mn < 2)); |
| |
| do |
| { |
| mp_ptr rp; |
| /* Here fp==F[k] and f1p==F[k-1], with k being the bits of n from |
| nbi upwards. |
| |
| Based on the next bit of n, we'll double to the pair |
| fp==F[2k],f1p==F[2k-1] or fp==F[2k+1],f1p==F[2k], according as |
| that bit is 0 or 1 respectively. */ |
| |
| mpn_sqr (tp, fp, mn); |
| mpn_sqr (fp, f1p, mn); |
| |
| /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2. */ |
| f1p[2 * mn] = mpn_add_n (f1p, tp, fp, 2 * mn); |
| |
| /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k. |
| pb is the low bit of our implied k. */ |
| |
| /* fp is F[k-1]^2 == 0 or 1 mod 4, like all squares. */ |
| ASSERT ((fp[0] & 2) == 0); |
| ASSERT (pb == (pb & 1)); |
| ASSERT ((fp[0] + (pb ? 2 : 0)) == (fp[0] | (pb << 1))); |
| fp[0] |= pb << 1; /* possible -2 */ |
| #if HAVE_NATIVE_mpn_rsblsh2_n |
| fp[2 * mn] = 1 + mpn_rsblsh2_n (fp, fp, tp, 2 * mn); |
| MPN_INCR_U(fp, 2 * mn + 1, (1 ^ pb) << 1); /* possible +2 */ |
| fp[2 * mn] = (fp[2 * mn] - 1) & GMP_NUMB_MAX; |
| #else |
| { |
| mp_limb_t c; |
| |
| c = mpn_lshift (tp, tp, 2 * mn, 2); |
| tp[0] |= (1 ^ pb) << 1; /* possible +2 */ |
| c -= mpn_sub_n (fp, tp, fp, 2 * mn); |
| fp[2 * mn] = c & GMP_NUMB_MAX; |
| } |
| #endif |
| neg = fp[2 * mn] == GMP_NUMB_MAX; |
| |
| /* Calculate F[2k-1] = F[k]^2 + F[k-1]^2 */ |
| /* Calculate F[2k+1] = 4*F[k]^2 - F[k-1]^2 + 2*(-1)^k */ |
| |
| /* Calculate F[2k] = F[2k+1] - F[2k-1], replacing the unwanted one of |
| F[2k+1] and F[2k-1]. */ |
| --nbi; |
| pb = (np [nbi / GMP_NUMB_BITS] >> (nbi % GMP_NUMB_BITS)) & 1; |
| rp = pb ? f1p : fp; |
| if (neg) |
| { |
| /* Calculate -(F[2k+1] - F[2k-1]) */ |
| rp[2 * mn] = f1p[2 * mn] + 1 - mpn_sub_n (rp, f1p, fp, 2 * mn); |
| neg = ! pb; |
| if (pb) /* fp not overwritten, negate it. */ |
| fp [2 * mn] = 1 ^ mpn_neg (fp, fp, 2 * mn); |
| } |
| else |
| { |
| neg = abs_sub_n (rp, fp, f1p, 2 * mn + 1) < 0; |
| } |
| |
| mpn_tdiv_qr (tp, fp, 0, fp, 2 * mn + 1, mp, mn); |
| mpn_tdiv_qr (tp, f1p, 0, f1p, 2 * mn + 1, mp, mn); |
| } |
| while (nbi != 0); |
| |
| TMP_FREE; |
| |
| return neg; |
| } |
| } |