| #ifndef AOS_EVENTS_EVENT_SCHEDULER_H_ |
| #define AOS_EVENTS_EVENT_SCHEDULER_H_ |
| |
| #include <algorithm> |
| #include <map> |
| #include <memory> |
| #include <unordered_set> |
| #include <utility> |
| #include <vector> |
| |
| #include "aos/events/event_loop.h" |
| #include "aos/logging/implementations.h" |
| #include "aos/time/time.h" |
| #include "glog/logging.h" |
| |
| namespace aos { |
| |
| // This clock is the basis for distributed time. It is used to synchronize time |
| // between multiple nodes. This is a new type so conversions to and from the |
| // monotonic and realtime clocks aren't implicit. |
| class distributed_clock { |
| public: |
| typedef ::std::chrono::nanoseconds::rep rep; |
| typedef ::std::chrono::nanoseconds::period period; |
| typedef ::std::chrono::nanoseconds duration; |
| typedef ::std::chrono::time_point<distributed_clock> time_point; |
| |
| // This clock is the base clock for the simulation and everything is synced to |
| // it. It never jumps. |
| static constexpr bool is_steady = true; |
| |
| // Returns the epoch (0). |
| static constexpr time_point epoch() { return time_point(zero()); } |
| |
| static constexpr duration zero() { return duration(0); } |
| |
| static constexpr time_point min_time{ |
| time_point(duration(::std::numeric_limits<duration::rep>::min()))}; |
| static constexpr time_point max_time{ |
| time_point(duration(::std::numeric_limits<duration::rep>::max()))}; |
| }; |
| |
| std::ostream &operator<<(std::ostream &stream, |
| const aos::distributed_clock::time_point &now); |
| |
| class EventSchedulerScheduler; |
| |
| class EventScheduler { |
| public: |
| using ChannelType = |
| std::multimap<monotonic_clock::time_point, std::function<void()>>; |
| using Token = ChannelType::iterator; |
| |
| // Schedule an event with a callback function |
| // Returns an iterator to the event |
| Token Schedule(monotonic_clock::time_point time, |
| std::function<void()> callback); |
| |
| // Schedules a callback when the event scheduler starts. |
| void ScheduleOnRun(std::function<void()> callback) { |
| on_run_.emplace_back(std::move(callback)); |
| } |
| |
| Token InvalidToken() { return events_list_.end(); } |
| |
| // Deschedule an event by its iterator |
| void Deschedule(Token token); |
| |
| // Runs the OnRun callbacks. |
| void RunOnRun(); |
| |
| // Returns true if events are being handled. |
| inline bool is_running() const; |
| |
| // Returns the timestamp of the next event to trigger. |
| aos::monotonic_clock::time_point OldestEvent(); |
| // Handles the next event. |
| void CallOldestEvent(); |
| |
| // Converts a time to the distributed clock for scheduling and cross-node time |
| // measurement. |
| distributed_clock::time_point ToDistributedClock( |
| monotonic_clock::time_point time) const { |
| return distributed_clock::epoch() + time.time_since_epoch() + |
| monotonic_offset_; |
| } |
| |
| // Takes the distributed time and converts it to the monotonic clock for this |
| // node. |
| monotonic_clock::time_point FromDistributedClock( |
| distributed_clock::time_point time) const { |
| return monotonic_clock::epoch() + time.time_since_epoch() - |
| monotonic_offset_; |
| } |
| |
| // Returns the current monotonic time on this node calculated from the |
| // distributed clock. |
| inline monotonic_clock::time_point monotonic_now() const; |
| |
| // Sets the offset between the distributed and monotonic clock. |
| // distributed = monotonic + offset; |
| void SetDistributedOffset(std::chrono::nanoseconds monotonic_offset) { |
| monotonic_offset_ = monotonic_offset; |
| } |
| |
| // Returns the offset used to convert to and from the distributed clock. |
| std::chrono::nanoseconds monotonic_offset() const { |
| return monotonic_offset_; |
| } |
| |
| private: |
| friend class EventSchedulerScheduler; |
| // Current execution time. |
| monotonic_clock::time_point now_ = monotonic_clock::epoch(); |
| |
| // Offset to the distributed clock. |
| // distributed = monotonic + offset; |
| std::chrono::nanoseconds monotonic_offset_ = std::chrono::seconds(0); |
| |
| // List of functions to run (once) when running. |
| std::vector<std::function<void()>> on_run_; |
| |
| // Multimap holding times to run functions. These are stored in order, and |
| // the order is the callback tree. |
| ChannelType events_list_; |
| |
| // Pointer to the actual scheduler. |
| EventSchedulerScheduler *scheduler_scheduler_ = nullptr; |
| }; |
| |
| // We need a heap of heaps... |
| // |
| // Events in a node have a very well defined progression of time. It is linear |
| // and well represented by the monotonic clock. |
| // |
| // Events across nodes don't follow this well. Time skews between the two nodes |
| // all the time. We also don't know the function ahead of time which converts |
| // from each node's monotonic clock to the distributed clock (our unified base |
| // time which is likely the average time between nodes). |
| // |
| // This pushes us towards merge sort. Sorting each node's events with a heap |
| // like we used to be doing, and then sorting each of those nodes independently. |
| class EventSchedulerScheduler { |
| public: |
| // Adds an event scheduler to the list. |
| void AddEventScheduler(EventScheduler *scheduler); |
| |
| // Runs until there are no more events or Exit is called. |
| void Run(); |
| |
| // Stops running. |
| void Exit() { is_running_ = false; } |
| |
| bool is_running() const { return is_running_; } |
| |
| // Runs for a duration on the distributed clock. Time on the distributed |
| // clock should be very representative of time on each node, but won't be |
| // exactly the same. |
| void RunFor(distributed_clock::duration duration); |
| |
| // Returns the current distributed time. |
| distributed_clock::time_point distributed_now() const { return now_; } |
| |
| private: |
| // Handles running the OnRun functions. |
| void RunOnRun() { |
| CHECK(!is_running_); |
| is_running_ = true; |
| for (EventScheduler *scheduler : schedulers_) { |
| scheduler->RunOnRun(); |
| } |
| } |
| |
| // Returns the next event time and scheduler on which to run it. |
| std::tuple<distributed_clock::time_point, EventScheduler *> OldestEvent(); |
| |
| // True if we are running. |
| bool is_running_ = false; |
| // The current time. |
| distributed_clock::time_point now_ = distributed_clock::epoch(); |
| // List of schedulers to run in sync. |
| std::vector<EventScheduler *> schedulers_; |
| }; |
| |
| inline monotonic_clock::time_point EventScheduler::monotonic_now() const { |
| // Make sure we stay in sync. |
| CHECK_EQ(now_, FromDistributedClock(scheduler_scheduler_->distributed_now())); |
| return now_; |
| } |
| |
| inline bool EventScheduler::is_running() const { |
| return scheduler_scheduler_->is_running(); |
| } |
| |
| } // namespace aos |
| |
| #endif // AOS_EVENTS_EVENT_SCHEDULER_H_ |