blob: 55ca6135eb4eac59feb317425d61ffcd8b87cf1f [file] [log] [blame]
#include "catch.hpp"
#include "optional.hpp"
#include <string>
#define TOKENPASTE(x, y) x##y
#define TOKENPASTE2(x, y) TOKENPASTE(x, y)
#define STATIC_REQUIRE(e) \
constexpr bool TOKENPASTE2(rqure, __LINE__) = e; \
REQUIRE(e);
constexpr int get_int(int) { return 42; }
TL_OPTIONAL_11_CONSTEXPR tl::optional<int> get_opt_int(int) { return 42; }
// What is Clang Format up to?!
TEST_CASE("Monadic operations", "[monadic]") {
SECTION("map") { // lhs is empty
tl::optional<int> o1;
auto o1r = o1.map([](int i) { return i + 2; });
STATIC_REQUIRE((std::is_same<decltype(o1r), tl::optional<int>>::value));
REQUIRE(!o1r);
// lhs has value
tl::optional<int> o2 = 40;
auto o2r = o2.map([](int i) { return i + 2; });
STATIC_REQUIRE((std::is_same<decltype(o2r), tl::optional<int>>::value));
REQUIRE(o2r.value() == 42);
struct rval_call_map {
double operator()(int) && { return 42.0; };
};
// ensure that function object is forwarded
tl::optional<int> o3 = 42;
auto o3r = o3.map(rval_call_map{});
STATIC_REQUIRE((std::is_same<decltype(o3r), tl::optional<double>>::value));
REQUIRE(o3r.value() == 42);
// ensure that lhs is forwarded
tl::optional<int> o4 = 40;
auto o4r = std::move(o4).map([](int &&i) { return i + 2; });
STATIC_REQUIRE((std::is_same<decltype(o4r), tl::optional<int>>::value));
REQUIRE(o4r.value() == 42);
// ensure that lhs is const-propagated
const tl::optional<int> o5 = 40;
auto o5r = o5.map([](const int &i) { return i + 2; });
STATIC_REQUIRE((std::is_same<decltype(o5r), tl::optional<int>>::value));
REQUIRE(o5r.value() == 42);
// test void return
tl::optional<int> o7 = 40;
auto f7 = [](const int &i) { return; };
auto o7r = o7.map(f7);
STATIC_REQUIRE(
(std::is_same<decltype(o7r), tl::optional<tl::monostate>>::value));
REQUIRE(o7r.has_value());
// test each overload in turn
tl::optional<int> o8 = 42;
auto o8r = o8.map([](int) { return 42; });
REQUIRE(*o8r == 42);
tl::optional<int> o9 = 42;
auto o9r = o9.map([](int) { return; });
REQUIRE(o9r);
tl::optional<int> o12 = 42;
auto o12r = std::move(o12).map([](int) { return 42; });
REQUIRE(*o12r == 42);
tl::optional<int> o13 = 42;
auto o13r = std::move(o13).map([](int) { return; });
REQUIRE(o13r);
const tl::optional<int> o16 = 42;
auto o16r = o16.map([](int) { return 42; });
REQUIRE(*o16r == 42);
const tl::optional<int> o17 = 42;
auto o17r = o17.map([](int) { return; });
REQUIRE(o17r);
const tl::optional<int> o20 = 42;
auto o20r = std::move(o20).map([](int) { return 42; });
REQUIRE(*o20r == 42);
const tl::optional<int> o21 = 42;
auto o21r = std::move(o21).map([](int) { return; });
REQUIRE(o21r);
tl::optional<int> o24 = tl::nullopt;
auto o24r = o24.map([](int) { return 42; });
REQUIRE(!o24r);
tl::optional<int> o25 = tl::nullopt;
auto o25r = o25.map([](int) { return; });
REQUIRE(!o25r);
tl::optional<int> o28 = tl::nullopt;
auto o28r = std::move(o28).map([](int) { return 42; });
REQUIRE(!o28r);
tl::optional<int> o29 = tl::nullopt;
auto o29r = std::move(o29).map([](int) { return; });
REQUIRE(!o29r);
const tl::optional<int> o32 = tl::nullopt;
auto o32r = o32.map([](int) { return 42; });
REQUIRE(!o32r);
const tl::optional<int> o33 = tl::nullopt;
auto o33r = o33.map([](int) { return; });
REQUIRE(!o33r);
const tl::optional<int> o36 = tl::nullopt;
auto o36r = std::move(o36).map([](int) { return 42; });
REQUIRE(!o36r);
const tl::optional<int> o37 = tl::nullopt;
auto o37r = std::move(o37).map([](int) { return; });
REQUIRE(!o37r);
// callable which returns a reference
tl::optional<int> o38 = 42;
auto o38r = o38.map([](int &i) -> const int & { return i; });
REQUIRE(o38r);
REQUIRE(*o38r == 42);
int i = 42;
tl::optional<int&> o39 = i;
o39.map([](int& x){x = 12;});
REQUIRE(i == 12);
}
SECTION("map constexpr") {
#if !defined(_MSC_VER) && defined(TL_OPTIONAL_CXX14)
// test each overload in turn
constexpr tl::optional<int> o16 = 42;
constexpr auto o16r = o16.map(get_int);
STATIC_REQUIRE(*o16r == 42);
constexpr tl::optional<int> o20 = 42;
constexpr auto o20r = std::move(o20).map(get_int);
STATIC_REQUIRE(*o20r == 42);
constexpr tl::optional<int> o32 = tl::nullopt;
constexpr auto o32r = o32.map(get_int);
STATIC_REQUIRE(!o32r);
constexpr tl::optional<int> o36 = tl::nullopt;
constexpr auto o36r = std::move(o36).map(get_int);
STATIC_REQUIRE(!o36r);
#endif
}
SECTION("and_then") {
// lhs is empty
tl::optional<int> o1;
auto o1r = o1.and_then([](int i) { return tl::optional<float>{42}; });
STATIC_REQUIRE((std::is_same<decltype(o1r), tl::optional<float>>::value));
REQUIRE(!o1r);
// lhs has value
tl::optional<int> o2 = 12;
auto o2r = o2.and_then([](int i) { return tl::optional<float>{42}; });
STATIC_REQUIRE((std::is_same<decltype(o2r), tl::optional<float>>::value));
REQUIRE(o2r.value() == 42.f);
// lhs is empty, rhs returns empty
tl::optional<int> o3;
auto o3r = o3.and_then([](int i) { return tl::optional<float>{}; });
STATIC_REQUIRE((std::is_same<decltype(o3r), tl::optional<float>>::value));
REQUIRE(!o3r);
// rhs returns empty
tl::optional<int> o4 = 12;
auto o4r = o4.and_then([](int i) { return tl::optional<float>{}; });
STATIC_REQUIRE((std::is_same<decltype(o4r), tl::optional<float>>::value));
REQUIRE(!o4r);
struct rval_call_and_then {
tl::optional<double> operator()(int) && {
return tl::optional<double>(42.0);
};
};
// ensure that function object is forwarded
tl::optional<int> o5 = 42;
auto o5r = o5.and_then(rval_call_and_then{});
STATIC_REQUIRE((std::is_same<decltype(o5r), tl::optional<double>>::value));
REQUIRE(o5r.value() == 42);
// ensure that lhs is forwarded
tl::optional<int> o6 = 42;
auto o6r =
std::move(o6).and_then([](int &&i) { return tl::optional<double>(i); });
STATIC_REQUIRE((std::is_same<decltype(o6r), tl::optional<double>>::value));
REQUIRE(o6r.value() == 42);
// ensure that function object is const-propagated
const tl::optional<int> o7 = 42;
auto o7r =
o7.and_then([](const int &i) { return tl::optional<double>(i); });
STATIC_REQUIRE((std::is_same<decltype(o7r), tl::optional<double>>::value));
REQUIRE(o7r.value() == 42);
// test each overload in turn
tl::optional<int> o8 = 42;
auto o8r = o8.and_then([](int i) { return tl::make_optional(42); });
REQUIRE(*o8r == 42);
tl::optional<int> o9 = 42;
auto o9r =
std::move(o9).and_then([](int i) { return tl::make_optional(42); });
REQUIRE(*o9r == 42);
const tl::optional<int> o10 = 42;
auto o10r = o10.and_then([](int i) { return tl::make_optional(42); });
REQUIRE(*o10r == 42);
const tl::optional<int> o11 = 42;
auto o11r =
std::move(o11).and_then([](int i) { return tl::make_optional(42); });
REQUIRE(*o11r == 42);
tl::optional<int> o16 = tl::nullopt;
auto o16r = o16.and_then([](int i) { return tl::make_optional(42); });
REQUIRE(!o16r);
tl::optional<int> o17 = tl::nullopt;
auto o17r =
std::move(o17).and_then([](int i) { return tl::make_optional(42); });
REQUIRE(!o17r);
const tl::optional<int> o18 = tl::nullopt;
auto o18r = o18.and_then([](int i) { return tl::make_optional(42); });
REQUIRE(!o18r);
const tl::optional<int> o19 = tl::nullopt;
auto o19r = std::move(o19).and_then([](int i) { return tl::make_optional(42); });
REQUIRE(!o19r);
int i = 3;
tl::optional<int&> o20{i};
std::move(o20).and_then([](int& r){return tl::optional<int&>{++r};});
REQUIRE(o20);
REQUIRE(i == 4);
}
SECTION("constexpr and_then") {
#if !defined(_MSC_VER) && defined(TL_OPTIONAL_CXX14)
constexpr tl::optional<int> o10 = 42;
constexpr auto o10r = o10.and_then(get_opt_int);
REQUIRE(*o10r == 42);
constexpr tl::optional<int> o11 = 42;
constexpr auto o11r = std::move(o11).and_then(get_opt_int);
REQUIRE(*o11r == 42);
constexpr tl::optional<int> o18 = tl::nullopt;
constexpr auto o18r = o18.and_then(get_opt_int);
REQUIRE(!o18r);
constexpr tl::optional<int> o19 = tl::nullopt;
constexpr auto o19r = std::move(o19).and_then(get_opt_int);
REQUIRE(!o19r);
#endif
}
SECTION("or else") {
tl::optional<int> o1 = 42;
REQUIRE(*(o1.or_else([] { return tl::make_optional(13); })) == 42);
tl::optional<int> o2;
REQUIRE(*(o2.or_else([] { return tl::make_optional(13); })) == 13);
}
SECTION("disjunction") {
tl::optional<int> o1 = 42;
tl::optional<int> o2 = 12;
tl::optional<int> o3;
REQUIRE(*o1.disjunction(o2) == 42);
REQUIRE(*o1.disjunction(o3) == 42);
REQUIRE(*o2.disjunction(o1) == 12);
REQUIRE(*o2.disjunction(o3) == 12);
REQUIRE(*o3.disjunction(o1) == 42);
REQUIRE(*o3.disjunction(o2) == 12);
}
SECTION("conjunction") {
tl::optional<int> o1 = 42;
REQUIRE(*o1.conjunction(42.0) == 42.0);
REQUIRE(*o1.conjunction(std::string{"hello"}) == std::string{"hello"});
tl::optional<int> o2;
REQUIRE(!o2.conjunction(42.0));
REQUIRE(!o2.conjunction(std::string{"hello"}));
}
SECTION("map_or") {
tl::optional<int> o1 = 21;
REQUIRE((o1.map_or([](int x) { return x * 2; }, 13)) == 42);
tl::optional<int> o2;
REQUIRE((o2.map_or([](int x) { return x * 2; }, 13)) == 13);
}
SECTION("map_or_else") {
tl::optional<int> o1 = 21;
REQUIRE((o1.map_or_else([](int x) { return x * 2; }, [] { return 13; })) ==
42);
tl::optional<int> o2;
REQUIRE((o2.map_or_else([](int x) { return x * 2; }, [] { return 13; })) ==
13);
}
SECTION("take") {
tl::optional<int> o1 = 42;
REQUIRE(*o1.take() == 42);
REQUIRE(!o1);
tl::optional<int> o2;
REQUIRE(!o2.take());
REQUIRE(!o2);
}
struct foo {
void non_const() {}
};
#if defined(TL_OPTIONAL_CXX14) && !defined(TL_OPTIONAL_GCC49) && \
!defined(TL_OPTIONAL_GCC54) && !defined(TL_OPTIONAL_GCC55)
SECTION("Issue #1") {
tl::optional<foo> f = foo{};
auto l = [](auto &&x) { x.non_const(); };
f.map(l);
}
#endif
struct overloaded {
tl::optional<int> operator()(foo &) { return 0; }
tl::optional<std::string> operator()(const foo &) { return ""; }
};
SECTION("Issue #2") {
tl::optional<foo> f = foo{};
auto x = f.and_then(overloaded{});
}
};