blob: e69d874f85bd61f47830cd6519b2b3aeed6bcaab [file] [log] [blame]
#!/usr/bin/python
from __future__ import print_function
from matplotlib import pylab
import gflags
import glog
import numpy
import scipy
import scipy.integrate
import scipy.optimize
import sys
from frc971.control_loops.python import polydrivetrain
from frc971.control_loops.python import drivetrain
from frc971.control_loops.python import controls
import y2016.control_loops.python.drivetrain
"""This file is my playground for implementing spline following.
All splines here are cubic bezier splines. See
https://en.wikipedia.org/wiki/B%C3%A9zier_curve for more details.
"""
FLAGS = gflags.FLAGS
def RungeKutta(f, y0, t, h, count=1):
"""4th order RungeKutta integration of dy/dt = f(t, y) starting at X."""
y1 = y0
dh = h / float(count)
for x in xrange(count):
k1 = dh * f(t + dh * x, y1)
k2 = dh * f(t + dh * x + dh / 2.0, y1 + k1 / 2.0)
k3 = dh * f(t + dh * x + dh / 2.0, y1 + k2 / 2.0)
k4 = dh * f(t + dh * x + dh, y1 + k3)
y1 += (k1 + 2.0 * k2 + 2.0 * k3 + k4) / 6.0
return y1
def spline(alpha, control_points):
"""Computes a Cubic Bezier curve.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline points. n is the dimension of the control
points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
alpha_matrix = [[(1.0 - a)**3.0, 3.0 * (1.0 - a)**2.0 * a,
3.0 * (1.0 - a) * a**2.0, a**3.0] for a in alpha]
return control_points * numpy.matrix(alpha_matrix).T
def dspline(alpha, control_points):
"""Computes the derivative of a Cubic Bezier curve wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline point derivatives. n is the dimension of the
control points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
dalpha_matrix = [[
-3.0 * (1.0 - a)**2.0, 3.0 * (1.0 - a)**2.0 + -2.0 * 3.0 *
(1.0 - a) * a, -3.0 * a**2.0 + 2.0 * 3.0 * (1.0 - a) * a, 3.0 * a**2.0
] for a in alpha]
return control_points * numpy.matrix(dalpha_matrix).T
def ddspline(alpha, control_points):
"""Computes the second derivative of a Cubic Bezier curve wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline point second derivatives. n is the dimension of
the control points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
ddalpha_matrix = [[
2.0 * 3.0 * (1.0 - a),
-2.0 * 3.0 * (1.0 - a) + -2.0 * 3.0 * (1.0 - a) + 2.0 * 3.0 * a,
-2.0 * 3.0 * a + 2.0 * 3.0 * (1.0 - a) - 2.0 * 3.0 * a,
2.0 * 3.0 * a
] for a in alpha]
return control_points * numpy.matrix(ddalpha_matrix).T
def dddspline(alpha, control_points):
"""Computes the third derivative of a Cubic Bezier curve wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the curve at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
n x m matrix of spline point second derivatives. n is the dimension of
the control points, and m is the number of points in 'alpha'.
"""
if numpy.isscalar(alpha):
alpha = [alpha]
ddalpha_matrix = [[
-2.0 * 3.0,
2.0 * 3.0 + 2.0 * 3.0 + 2.0 * 3.0,
-2.0 * 3.0 - 2.0 * 3.0 - 2.0 * 3.0,
2.0 * 3.0
] for a in alpha]
return control_points * numpy.matrix(ddalpha_matrix).T
def spline_theta(alpha, control_points, dspline_points=None):
"""Computes the heading of a robot following a Cubic Bezier curve at alpha.
Args:
alpha: scalar or list of spline parameters to calculate the heading at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
m array of spline point headings. m is the number of points in 'alpha'.
"""
if dspline_points is None:
dspline_points = dspline(alpha, control_points)
return numpy.arctan2(
numpy.array(dspline_points)[1, :], numpy.array(dspline_points)[0, :])
def dspline_theta(alpha,
control_points,
dspline_points=None,
ddspline_points=None):
"""Computes the derivative of the heading at alpha.
This is the derivative of spline_theta wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the derivative
of the heading at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
m array of spline point heading derivatives. m is the number of points
in 'alpha'.
"""
if dspline_points is None:
dspline_points = dspline(alpha, control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, control_points)
dx = numpy.array(dspline_points)[0, :]
dy = numpy.array(dspline_points)[1, :]
ddx = numpy.array(ddspline_points)[0, :]
ddy = numpy.array(ddspline_points)[1, :]
return 1.0 / (dx**2.0 + dy**2.0) * (dx * ddy - dy * ddx)
def ddspline_theta(alpha,
control_points,
dspline_points=None,
ddspline_points=None,
dddspline_points=None):
"""Computes the second derivative of the heading at alpha.
This is the second derivative of spline_theta wrt alpha.
Args:
alpha: scalar or list of spline parameters to calculate the second
derivative of the heading at.
control_points: n x 4 matrix of control points. n[:, 0] is the
starting point, and n[:, 3] is the ending point.
Returns:
m array of spline point heading second derivatives. m is the number of
points in 'alpha'.
"""
if dspline_points is None:
dspline_points = dspline(alpha, control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, control_points)
if dddspline_points is None:
dddspline_points = dddspline(alpha, control_points)
dddspline_points = dddspline(alpha, control_points)
dx = numpy.array(dspline_points)[0, :]
dy = numpy.array(dspline_points)[1, :]
ddx = numpy.array(ddspline_points)[0, :]
ddy = numpy.array(ddspline_points)[1, :]
dddx = numpy.array(dddspline_points)[0, :]
dddy = numpy.array(dddspline_points)[1, :]
return -1.0 / ((dx**2.0 + dy**2.0)**2.0) * (dx * ddy - dy * ddx) * 2.0 * (
dy * ddy + dx * ddx) + 1.0 / (dx**2.0 + dy**2.0) * (dx * dddy - dy *
dddx)
class Path(object):
"""Represents a path to follow."""
def __init__(self, control_points):
"""Constructs a path given the control points."""
self._control_points = control_points
def spline_velocity(alpha):
return numpy.linalg.norm(dspline(alpha, self._control_points), axis=0)
self._point_distances = [0.0]
num_alpha = 100
# Integrate the xy velocity as a function of alpha for each step in the
# table to get an alpha -> distance calculation. Gaussian Quadrature
# is quite accurate, so we can get away with fewer points here than we
# might think.
for alpha in numpy.linspace(0.0, 1.0, num_alpha)[1:]:
self._point_distances.append(
scipy.integrate.fixed_quad(spline_velocity, alpha, alpha + 1.0
/ (num_alpha - 1.0))[0] +
self._point_distances[-1])
def distance_to_alpha(self, distance):
"""Converts distances along the spline to alphas.
Args:
distance: A scalar or array of distances to convert
Returns:
An array of distances, (1 big if the input was a scalar)
"""
if numpy.isscalar(distance):
return numpy.array([self._distance_to_alpha_scalar(distance)])
else:
return numpy.array([self._distance_to_alpha_scalar(d) for d in distance])
def _distance_to_alpha_scalar(self, distance):
"""Helper to compute alpha for a distance for a single scalar."""
if distance <= 0.0:
return 0.0
elif distance >= self.length():
return 1.0
after_index = numpy.searchsorted(
self._point_distances, distance, side='right')
before_index = after_index - 1
# Linearly interpolate alpha from our (sorted) distance table.
return (distance - self._point_distances[before_index]) / (
self._point_distances[after_index] -
self._point_distances[before_index]) * (1.0 / (
len(self._point_distances) - 1.0)) + float(before_index) / (
len(self._point_distances) - 1.0)
def length(self):
"""Returns the length of the spline (in meters)"""
return self._point_distances[-1]
# TODO(austin): need a better name...
def xy(self, distance):
"""Returns the xy position as a function of distance."""
return spline(self.distance_to_alpha(distance), self._control_points)
# TODO(austin): need a better name...
def dxy(self, distance):
"""Returns the xy velocity as a function of distance."""
dspline_point = dspline(
self.distance_to_alpha(distance), self._control_points)
return dspline_point / numpy.linalg.norm(dspline_point, axis=0)
# TODO(austin): need a better name...
def ddxy(self, distance):
"""Returns the xy acceleration as a function of distance."""
alpha = self.distance_to_alpha(distance)
dspline_points = dspline(alpha, self._control_points)
ddspline_points = ddspline(alpha, self._control_points)
norm = numpy.linalg.norm(
dspline_points, axis=0)**2.0
return ddspline_points / norm - numpy.multiply(
dspline_points, (numpy.array(dspline_points)[0, :] *
numpy.array(ddspline_points)[0, :] +
numpy.array(dspline_points)[1, :] *
numpy.array(ddspline_points)[1, :]) / (norm**2.0))
def theta(self, distance, dspline_points=None):
"""Returns the heading as a function of distance."""
return spline_theta(
self.distance_to_alpha(distance),
self._control_points,
dspline_points=dspline_points)
def dtheta(self, distance, dspline_points=None, ddspline_points=None):
"""Returns the angular velocity as a function of distance."""
alpha = self.distance_to_alpha(distance)
if dspline_points is None:
dspline_points = dspline(alpha, self._control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, self._control_points)
dtheta_points = dspline_theta(alpha, self._control_points,
dspline_points, ddspline_points)
return dtheta_points / numpy.linalg.norm(dspline_points, axis=0)
def dtheta_dt(self, distance, velocity, dspline_points=None, ddspline_points=None):
"""Returns the angular velocity as a function of time."""
return self.dtheta(distance, dspline_points, ddspline_points) * velocity
def ddtheta(self,
distance,
dspline_points=None,
ddspline_points=None,
dddspline_points=None):
"""Returns the angular acceleration as a function of distance."""
alpha = self.distance_to_alpha(distance)
if dspline_points is None:
dspline_points = dspline(alpha, self._control_points)
if ddspline_points is None:
ddspline_points = ddspline(alpha, self._control_points)
if dddspline_points is None:
dddspline_points = dddspline(alpha, self._control_points)
dtheta_points = dspline_theta(alpha, self._control_points,
dspline_points, ddspline_points)
ddtheta_points = ddspline_theta(alpha, self._control_points,
dspline_points, ddspline_points,
dddspline_points)
# TODO(austin): Factor out the d^alpha/dd^2.
return ddtheta_points / numpy.linalg.norm(
dspline_points, axis=0)**2.0 - numpy.multiply(
dtheta_points, (numpy.array(dspline_points)[0, :] *
numpy.array(ddspline_points)[0, :] +
numpy.array(dspline_points)[1, :] *
numpy.array(ddspline_points)[1, :]) /
((numpy.array(dspline_points)[0, :]**2.0 +
numpy.array(dspline_points)[1, :]**2.0)**2.0))
def integrate_accel_for_distance(f, v, x, dx):
# Use a trick from
# https://www.johndcook.com/blog/2012/02/21/care-and-treatment-of-singularities/
#
# We want to calculate:
# v0 + (integral of dv/dt = f(x, v) from x to x + dx); noting that dv/dt
# is expressed in t, not distance, so we want to do the integral of
# dv/dx = f(x, v) / v.
#
# Because v can be near zero at the start of the integral (but because f is
# nonnegative, v will never go to zero), but the integral should still be
# valid, we follow the suggestion and instead calculate
# v0 + integral((f(x, v) - f(x0, v0)) / v) + integral(f(x0, v0) / v).
#
# Using a0 = f(x0, v0), we get the second term as
# integral((f(x, v) - a0) / v)
# where when v is zero we will also be at x0/v0 (because v can only start
# at zero, not go to zero).
#
# The second term, integral(a0 / v) requires an approximation.--in
# this case, that dv/dt is constant. Thus, we have
# integral(a0 / sqrt(v0^2 + 2*a0*x)) = sqrt(2*a0*dx + v0^2) - sqrt(v0^2)
# = sqrt(2 * a0 * dx * v0^2) - v0.
#
# Because the RungeKutta function returns v0 + the integral, this
# gives the statements below.
a0 = f(x, v)
def integrablef(t, y):
# Since we know that a0 == a(0) and that they are asymptotically the
# same at 0, we know that the limit is 0 at 0. This is true because
# when starting from a stop, under sane accelerations, we can assume
# that we will start with a constant acceleration. So, hard-code it.
if numpy.abs(y) < 1e-6:
return 0.0
return (f(t, y) - a0) / y
return (RungeKutta(integrablef, v, x, dx) - v
) + numpy.sqrt(2.0 * a0 * dx + v * v)
class Trajectory(object):
def __init__(self, path, drivetrain, longitudal_accel, lateral_accel,
distance_count):
self._path = path
self._drivetrain = drivetrain
self.distances = numpy.linspace(0.0,
self._path.length(), distance_count)
self._longitudal_accel = longitudal_accel
self._lateral_accel = lateral_accel
self._B_inverse = numpy.linalg.inv(self._drivetrain.B_continuous)
def create_plan(self, vmax):
vmax = 10.0
plan = numpy.array(numpy.zeros((len(self.distances), )))
plan.fill(vmax)
return plan
def lateral_velocity_curvature(self, distance):
return numpy.sqrt(self._lateral_accel /
numpy.linalg.norm(self._path.ddxy(distance)))
def lateral_accel_pass(self, plan):
plan = plan.copy()
# TODO(austin): This appears to be doing nothing.
for i, distance in enumerate(self.distances):
plan[i] = min(plan[i], self.lateral_velocity_curvature(distance))
return plan
def compute_K345(self, current_dtheta, current_ddtheta):
# We've now got the equation:
# K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
K1 = numpy.matrix(
[[-self._drivetrain.robot_radius_l * current_ddtheta],
[self._drivetrain.robot_radius_r * current_ddtheta]])
K2 = numpy.matrix(
[[1.0 - self._drivetrain.robot_radius_l * current_dtheta],
[1.0 + self._drivetrain.robot_radius_r * current_dtheta]])
# Now, rephrase it as K5 a + K3 v^2 + K4 v = U
K3 = self._B_inverse * K1
K4 = -self._B_inverse * self._drivetrain.A_continuous * K2
K5 = self._B_inverse * K2
return K3, K4, K5
def forward_acceleration(self, x, v):
current_ddtheta = self._path.ddtheta(x)[0]
current_dtheta = self._path.dtheta(x)[0]
# We've now got the equation:
# K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
# Now, rephrase it as K5 a + K3 v^2 + K4 v = U
K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta)
C = K3 * v * v + K4 * v
# Note: K345 are not quite constant over the step, but we are going
# to assume they are for now.
accelerations = [(12.0 - C[0, 0]) / K5[0, 0], (12.0 - C[1, 0]) /
K5[1, 0], (-12.0 - C[0, 0]) / K5[0, 0],
(-12.0 - C[1, 0]) / K5[1, 0]]
maxa = -float('inf')
for a in accelerations:
U = K5 * a + K3 * v * v + K4 * v
if not (numpy.abs(U) > 12.0 + 1e-6).any():
maxa = max(maxa, a)
lateral_accel = v * v * numpy.linalg.norm(self._path.ddxy(x))
# Constrain the longitudinal acceleration to keep in a pseudo friction
# circle. This will make it so we don't floor it while in a turn and
# cause extra wheel slip.
long_accel = numpy.sqrt(1.0 - (lateral_accel / self._lateral_accel)**
2.0) * self._longitudal_accel
return min(long_accel, maxa)
def forward_pass(self, plan):
plan = plan.copy()
for i, distance in enumerate(self.distances):
if i == len(self.distances) - 1:
break
plan[i + 1] = min(
plan[i + 1],
integrate_accel_for_distance(
self.forward_acceleration, plan[i], self.distances[i],
self.distances[i + 1] - self.distances[i]))
return plan
def backward_acceleration(self, x, v):
# TODO(austin): Forwards and backwards are quite similar. Can we
# factor this out?
current_ddtheta = self._path.ddtheta(x)[0]
current_dtheta = self._path.dtheta(x)[0]
# We've now got the equation:
# K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
# Now, rephrase it as K5 a + K3 v^2 + K4 v = U
K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta)
C = K3 * v * v + K4 * v
# Note: K345 are not quite constant over the step, but we are going
# to assume they are for now.
accelerations = [(12.0 - C[0, 0]) / K5[0, 0], (12.0 - C[1, 0]) /
K5[1, 0], (-12.0 - C[0, 0]) / K5[0, 0],
(-12.0 - C[1, 0]) / K5[1, 0]]
mina = float('inf')
for a in accelerations:
U = K5 * a + K3 * v * v + K4 * v
if not (numpy.abs(U) > 12.0 + 1e-6).any():
mina = min(mina, a)
lateral_accel = v * v * numpy.linalg.norm(self._path.ddxy(x))
# Constrain the longitudinal acceleration to keep in a pseudo friction
# circle. This will make it so we don't floor it while in a turn and
# cause extra wheel slip.
long_accel = -numpy.sqrt(1.0 - (lateral_accel / self._lateral_accel)**
2.0) * self._longitudal_accel
return max(long_accel, mina)
def backward_pass(self, plan):
plan = plan.copy()
for i, distance in reversed(list(enumerate(self.distances))):
if i == 0:
break
plan[i - 1] = min(
plan[i - 1],
integrate_accel_for_distance(
self.backward_acceleration, plan[i], self.distances[i],
self.distances[i - 1] - self.distances[i]))
return plan
# TODO(austin): The plan should probably not be passed in...
def ff_accel(self, plan, distance):
if distance < self.distances[1]:
after_index = 1
before_index = after_index - 1
if distance < self.distances[0]:
distance = 0.0
elif distance > self.distances[-2]:
after_index = len(self.distances) - 1
before_index = after_index - 1
if distance > self.distances[-1]:
distance = self.distances[-1]
else:
after_index = numpy.searchsorted(
self.distances, distance, side='right')
before_index = after_index - 1
vforwards = integrate_accel_for_distance(
self.forward_acceleration, plan[before_index],
self.distances[before_index],
distance - self.distances[before_index])
vbackward = integrate_accel_for_distance(
self.backward_acceleration, plan[after_index],
self.distances[after_index],
distance - self.distances[after_index])
vcurvature = self.lateral_velocity_curvature(distance)
if vcurvature < vforwards and vcurvature < vbackward:
accel = 0
velocity = vcurvature
elif vforwards < vbackward:
velocity = vforwards
accel = self.forward_acceleration(distance, velocity)
else:
velocity = vbackward
accel = self.backward_acceleration(distance, velocity)
return (distance, velocity, accel)
def ff_voltage(self, plan, distance):
_, velocity, accel = self.ff_accel(plan, distance)
current_ddtheta = self._path.ddtheta(distance)[0]
current_dtheta = self._path.dtheta(distance)[0]
# TODO(austin): Factor these out.
# We've now got the equation:
# K2 * d^2x/dt^2 + K1 (dx/dt)^2 = A * K2 * dx/dt + B * U
# Now, rephrase it as K5 a + K3 v^2 + K4 v = U
K3, K4, K5 = self.compute_K345(current_dtheta, current_ddtheta)
U = K5 * accel + K3 * velocity * velocity + K4 * velocity
return U
def goal_state(self, distance, velocity):
width = (
self._drivetrain.robot_radius_l + self._drivetrain.robot_radius_r)
goal = numpy.matrix(numpy.zeros((5, 1)))
goal[0:2, :] = self._path.xy(distance)
goal[2, :] = self._path.theta(distance)
Ter = numpy.linalg.inv(numpy.matrix([[0.5, 0.5], [-1.0 / width, 1.0 / width]]))
goal[3:5, :] = Ter * numpy.matrix(
[[velocity], [self._path.dtheta_dt(distance, velocity)]])
return goal
def main(argv):
# Build up the control point matrix
start = numpy.matrix([[0.0, 0.0]]).T
c1 = numpy.matrix([[0.5, 0.0]]).T
c2 = numpy.matrix([[0.5, 1.0]]).T
end = numpy.matrix([[1.0, 1.0]]).T
control_points = numpy.hstack((start, c1, c2, end))
# The alphas to plot
alphas = numpy.linspace(0.0, 1.0, 1000)
# Compute x, y and the 3 derivatives
spline_points = spline(alphas, control_points)
dspline_points = dspline(alphas, control_points)
ddspline_points = ddspline(alphas, control_points)
dddspline_points = dddspline(alphas, control_points)
# Compute theta and the two derivatives
theta = spline_theta(alphas, control_points, dspline_points=dspline_points)
dtheta = dspline_theta(
alphas, control_points, dspline_points=dspline_points)
ddtheta = ddspline_theta(
alphas,
control_points,
dspline_points=dspline_points,
dddspline_points=dddspline_points)
# Plot the control points and the spline.
pylab.figure()
pylab.plot(
numpy.array(control_points)[0, :],
numpy.array(control_points)[1, :],
'-o',
label='control')
pylab.plot(
numpy.array(spline_points)[0, :],
numpy.array(spline_points)[1, :],
label='spline')
pylab.legend()
# For grins, confirm that the double integral of the acceleration (with
# respect to the spline parameter) matches the position. This lets us
# confirm that the derivatives are consistent.
xint_plot = numpy.matrix(numpy.zeros((2, len(alphas))))
dxint_plot = xint_plot.copy()
xint = spline_points[:, 0].copy()
dxint = dspline_points[:, 0].copy()
xint_plot[:, 0] = xint
dxint_plot[:, 0] = dxint
for i in range(len(alphas) - 1):
xint += (alphas[i + 1] - alphas[i]) * dxint
dxint += (alphas[i + 1] - alphas[i]) * ddspline_points[:, i]
xint_plot[:, i + 1] = xint
dxint_plot[:, i + 1] = dxint
# Integrate up the spline velocity and heading to confirm that given a
# velocity (as a function of the spline parameter) and angle, we will move
# from the starting point to the ending point.
thetaint_plot = numpy.zeros((len(alphas),))
thetaint = theta[0]
dthetaint_plot = numpy.zeros((len(alphas),))
dthetaint = dtheta[0]
thetaint_plot[0] = thetaint
dthetaint_plot[0] = dthetaint
txint_plot = numpy.matrix(numpy.zeros((2, len(alphas))))
txint = spline_points[:, 0].copy()
txint_plot[:, 0] = txint
for i in range(len(alphas) - 1):
dalpha = alphas[i + 1] - alphas[i]
txint += dalpha * numpy.linalg.norm(
dspline_points[:, i]) * numpy.matrix(
[[numpy.cos(theta[i])], [numpy.sin(theta[i])]])
txint_plot[:, i + 1] = txint
thetaint += dalpha * dtheta[i]
dthetaint += dalpha * ddtheta[i]
thetaint_plot[i + 1] = thetaint
dthetaint_plot[i + 1] = dthetaint
# Now plot x, dx/dalpha, ddx/ddalpha, dddx/dddalpha, and integrals thereof
# to perform consistency checks.
pylab.figure()
pylab.plot(alphas, numpy.array(spline_points)[0, :], label='x')
pylab.plot(alphas, numpy.array(xint_plot)[0, :], label='ix')
pylab.plot(alphas, numpy.array(dspline_points)[0, :], label='dx')
pylab.plot(alphas, numpy.array(dxint_plot)[0, :], label='idx')
pylab.plot(alphas, numpy.array(txint_plot)[0, :], label='tix')
pylab.plot(alphas, numpy.array(ddspline_points)[0, :], label='ddx')
pylab.plot(alphas, numpy.array(dddspline_points)[0, :], label='dddx')
pylab.legend()
# Now do the same for y.
pylab.figure()
pylab.plot(alphas, numpy.array(spline_points)[1, :], label='y')
pylab.plot(alphas, numpy.array(xint_plot)[1, :], label='iy')
pylab.plot(alphas, numpy.array(dspline_points)[1, :], label='dy')
pylab.plot(alphas, numpy.array(dxint_plot)[1, :], label='idy')
pylab.plot(alphas, numpy.array(txint_plot)[1, :], label='tiy')
pylab.plot(alphas, numpy.array(ddspline_points)[1, :], label='ddy')
pylab.plot(alphas, numpy.array(dddspline_points)[1, :], label='dddy')
pylab.legend()
# And for theta.
pylab.figure()
pylab.plot(alphas, theta, label='theta')
pylab.plot(alphas, dtheta, label='dtheta')
pylab.plot(alphas, ddtheta, label='ddtheta')
pylab.plot(alphas, thetaint_plot, label='thetai')
pylab.plot(alphas, dthetaint_plot, label='dthetai')
pylab.plot(
alphas,
numpy.linalg.norm(
numpy.array(dspline_points), axis=0),
label='velocity')
# Now, repeat as a function of path length as opposed to alpha
path = Path(control_points)
distance_count = 1000
position = path.xy(0.0)
velocity = path.dxy(0.0)
theta = path.theta(0.0)
omega = path.dtheta(0.0)
iposition_plot = numpy.matrix(numpy.zeros((2, distance_count)))
ivelocity_plot = numpy.matrix(numpy.zeros((2, distance_count)))
iposition_plot[:, 0] = position.copy()
ivelocity_plot[:, 0] = velocity.copy()
itheta_plot = numpy.zeros((distance_count, ))
iomega_plot = numpy.zeros((distance_count, ))
itheta_plot[0] = theta
iomega_plot[0] = omega
distances = numpy.linspace(0.0, path.length(), distance_count)
for i in xrange(len(distances) - 1):
position += velocity * (distances[i + 1] - distances[i])
velocity += path.ddxy(distances[i]) * (distances[i + 1] - distances[i])
iposition_plot[:, i + 1] = position
ivelocity_plot[:, i + 1] = velocity
theta += omega * (distances[i + 1] - distances[i])
omega += path.ddtheta(distances[i]) * (distances[i + 1] - distances[i])
itheta_plot[i + 1] = theta
iomega_plot[i + 1] = omega
pylab.figure()
pylab.plot(distances, numpy.array(path.xy(distances))[0, :], label='x')
pylab.plot(distances, numpy.array(iposition_plot)[0, :], label='ix')
pylab.plot(distances, numpy.array(path.dxy(distances))[0, :], label='dx')
pylab.plot(distances, numpy.array(ivelocity_plot)[0, :], label='idx')
pylab.plot(distances, numpy.array(path.ddxy(distances))[0, :], label='ddx')
pylab.legend()
pylab.figure()
pylab.plot(distances, numpy.array(path.xy(distances))[1, :], label='y')
pylab.plot(distances, numpy.array(iposition_plot)[1, :], label='iy')
pylab.plot(distances, numpy.array(path.dxy(distances))[1, :], label='dy')
pylab.plot(distances, numpy.array(ivelocity_plot)[1, :], label='idy')
pylab.plot(distances, numpy.array(path.ddxy(distances))[1, :], label='ddy')
pylab.legend()
pylab.figure()
pylab.plot(distances, path.theta(distances), label='theta')
pylab.plot(distances, itheta_plot, label='itheta')
pylab.plot(distances, path.dtheta(distances), label='omega')
pylab.plot(distances, iomega_plot, label='iomega')
pylab.plot(distances, path.ddtheta(distances), label='alpha')
pylab.legend()
# TODO(austin): Start creating a velocity plan now that we have all the
# derivitives of our spline.
velocity_drivetrain = polydrivetrain.VelocityDrivetrainModel(
y2016.control_loops.python.drivetrain.kDrivetrain)
position_drivetrain = drivetrain.Drivetrain(
y2016.control_loops.python.drivetrain.kDrivetrain)
longitudal_accel = 3.0
lateral_accel = 2.0
trajectory = Trajectory(
path,
drivetrain=velocity_drivetrain,
longitudal_accel=longitudal_accel,
lateral_accel=lateral_accel,
distance_count=500)
vmax = numpy.inf
vmax = 10.0
lateral_accel_plan = trajectory.lateral_accel_pass(
trajectory.create_plan(vmax))
forward_accel_plan = lateral_accel_plan.copy()
# Start and end the path stopped.
forward_accel_plan[0] = 0.0
forward_accel_plan[-1] = 0.0
forward_accel_plan = trajectory.forward_pass(forward_accel_plan)
backward_accel_plan = trajectory.backward_pass(forward_accel_plan)
# And now, calculate the left, right voltage as a function of distance.
# TODO(austin): Factor out the accel and decel functions so we can use them
# to calculate voltage as a function of distance.
pylab.figure()
pylab.plot(trajectory.distances, lateral_accel_plan, label='accel pass')
pylab.plot(trajectory.distances, forward_accel_plan, label='forward pass')
pylab.plot(trajectory.distances, backward_accel_plan, label='forward pass')
pylab.xlabel("distance along spline (m)")
pylab.ylabel("velocity (m/s)")
pylab.legend()
dt = 0.005
# Now, let's integrate up the path centric coordinates to get a distance,
# velocity, and acceleration as a function of time to follow the path.
length_plan_t = [0.0]
length_plan_x = [numpy.matrix(numpy.zeros((2, 1)))]
length_plan_v = [0.0]
length_plan_a = [trajectory.ff_accel(backward_accel_plan, 0.0)[2]]
t = 0.0
spline_state = length_plan_x[-1][0:2, :]
while spline_state[0, 0] < path.length():
t += dt
def along_spline_diffeq(t, x):
_, v, a = trajectory.ff_accel(backward_accel_plan, x[0, 0])
return numpy.matrix([[x[1, 0]], [a]])
spline_state = RungeKutta(along_spline_diffeq,
spline_state.copy(), t, dt)
d, v, a = trajectory.ff_accel(backward_accel_plan, length_plan_x[-1][0, 0])
length_plan_v.append(v)
length_plan_a.append(a)
length_plan_t.append(t)
length_plan_x.append(spline_state.copy())
spline_state[1, 0] = v
xva_plan = numpy.matrix(numpy.zeros((3, len(length_plan_t))))
u_plan = numpy.matrix(numpy.zeros((2, len(length_plan_t))))
state_plan = numpy.matrix(numpy.zeros((5, len(length_plan_t))))
state = numpy.matrix(numpy.zeros((5, 1)))
state[3, 0] = 0.1
state[4, 0] = 0.1
states = numpy.matrix(numpy.zeros((5, len(length_plan_t))))
full_us = numpy.matrix(numpy.zeros((2, len(length_plan_t))))
x_es = []
y_es = []
theta_es = []
vel_es = []
omega_es = []
omega_rs = []
omega_cs = []
width = (velocity_drivetrain.robot_radius_l +
velocity_drivetrain.robot_radius_r)
Ter = numpy.matrix([[0.5, 0.5], [-1.0 / width, 1.0 / width]])
for i in xrange(len(length_plan_t)):
xva_plan[0, i] = length_plan_x[i][0, 0]
xva_plan[1, i] = length_plan_v[i]
xva_plan[2, i] = length_plan_a[i]
xy_r = path.xy(xva_plan[0, i])
x_r = xy_r[0, 0]
y_r = xy_r[1, 0]
theta_r = path.theta(xva_plan[0, i])[0]
vel_omega_r = numpy.matrix(
[[xva_plan[1, i]],
[path.dtheta_dt(xva_plan[0, i], xva_plan[1, i])[0]]])
vel_lr = numpy.linalg.inv(Ter) * vel_omega_r
state_plan[:, i] = numpy.matrix(
[[x_r], [y_r], [theta_r], [vel_lr[0, 0]], [vel_lr[1, 0]]])
u_plan[:, i] = trajectory.ff_voltage(backward_accel_plan, xva_plan[0, i])
Q = numpy.matrix(
numpy.diag([
1.0 / (0.05**2), 1.0 / (0.05**2), 1.0 / (0.2**2), 1.0 / (0.5**2),
1.0 / (0.5**2)
]))
R = numpy.matrix(numpy.diag([1.0 / (12.0**2), 1.0 / (12.0**2)]))
kMinVelocity = 0.1
for i in xrange(len(length_plan_t)):
states[:, i] = state
theta = state[2, 0]
sintheta = numpy.sin(theta)
costheta = numpy.cos(theta)
linear_velocity = (state[3, 0] + state[4, 0]) / 2.0
if abs(linear_velocity) < kMinVelocity / 100.0:
linear_velocity = 0.1
elif abs(linear_velocity) > kMinVelocity:
pass
elif linear_velocity > 0:
linear_velocity = kMinVelocity
elif linear_velocity < 0:
linear_velocity = -kMinVelocity
width = (velocity_drivetrain.robot_radius_l +
velocity_drivetrain.robot_radius_r)
A_linearized_continuous = numpy.matrix([[
0.0, 0.0, -sintheta * linear_velocity, 0.5 * costheta, 0.5 *
costheta
], [
0.0, 0.0, costheta * linear_velocity, 0.5 * sintheta, 0.5 *
sintheta
], [0.0, 0.0, 0.0, -1.0 / width, 1.0 / width],
[0.0, 0.0, 0.0, 0.0, 0.0],
[0.0, 0.0, 0.0, 0.0, 0.0]])
A_linearized_continuous[3:5, 3:5] = velocity_drivetrain.A_continuous
B_linearized_continuous = numpy.matrix(numpy.zeros((5, 2)))
B_linearized_continuous[3:5, :] = velocity_drivetrain.B_continuous
A, B = controls.c2d(A_linearized_continuous, B_linearized_continuous,
dt)
if i >= 0:
K = controls.dlqr(A, B, Q, R)
print("K", K)
print("eig", numpy.linalg.eig(A - B * K)[0])
goal_state = trajectory.goal_state(xva_plan[0, i], xva_plan[1, i])
state_error = goal_state - state
U = (trajectory.ff_voltage(backward_accel_plan, xva_plan[0, i]) + K *
(state_error))
def spline_diffeq(U, t, x):
velocity = x[3:5, :]
theta = x[2, 0]
linear_velocity = (velocity[0, 0] + velocity[1, 0]) / 2.0
angular_velocity = (velocity[1, 0] - velocity[0, 0]) / (
velocity_drivetrain.robot_radius_l +
velocity_drivetrain.robot_radius_r)
accel = (velocity_drivetrain.A_continuous * velocity +
velocity_drivetrain.B_continuous * U)
return numpy.matrix(
[[numpy.cos(theta) * linear_velocity],
[numpy.sin(theta) * linear_velocity], [angular_velocity],
[accel[0, 0]], [accel[1, 0]]])
full_us[:, i] = U
state = RungeKutta(lambda t, x: spline_diffeq(U, t, x),
state, i * dt, dt)
pylab.figure()
pylab.plot(length_plan_t, numpy.array(xva_plan)[0, :], label='x')
pylab.plot(length_plan_t, [x[1, 0] for x in length_plan_x], label='v')
pylab.plot(length_plan_t, numpy.array(xva_plan)[1, :], label='planv')
pylab.plot(length_plan_t, numpy.array(xva_plan)[2, :], label='a')
pylab.plot(length_plan_t, numpy.array(full_us)[0, :], label='vl')
pylab.plot(length_plan_t, numpy.array(full_us)[1, :], label='vr')
pylab.legend()
pylab.figure()
pylab.plot(
numpy.array(states)[0, :],
numpy.array(states)[1, :],
label='robot')
pylab.plot(
numpy.array(spline_points)[0, :],
numpy.array(spline_points)[1, :],
label='spline')
pylab.legend()
def a(_, x):
return 2.0
return 2.0 + 0.0001 * x
v = 0.0
for _ in xrange(10):
dx = 4.0 / 10.0
v = integrate_accel_for_distance(a, v, 0.0, dx)
print('v', v)
pylab.show()
if __name__ == '__main__':
argv = FLAGS(sys.argv)
sys.exit(main(argv))