blob: 57e2a5e3d040b904509b49f70c9aed3f34400311 [file] [log] [blame]
#include "aos/common/queue.h"
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <memory>
#include "aos/common/logging/logging.h"
#include "aos/common/type_traits.h"
namespace aos {
namespace {
static_assert(shm_ok<Queue>::value, "Queue instances go into shared memory");
const bool kReadDebug = false;
const bool kWriteDebug = false;
const bool kRefDebug = false;
const bool kFetchDebug = false;
// The number of extra messages the pool associated with each queue will be able
// to hold (for readers who are slow about freeing them).
const int kExtraMessages = 20;
} // namespace
struct Queue::MessageHeader {
int ref_count;
int index; // in pool_
static MessageHeader *Get(const void *msg) {
return reinterpret_cast<MessageHeader *>(
static_cast<uint8_t *>(const_cast<void *>(msg)) -
sizeof(MessageHeader));
}
void Swap(MessageHeader *other) {
MessageHeader temp;
memcpy(&temp, other, sizeof(temp));
memcpy(other, this, sizeof(*other));
memcpy(this, &temp, sizeof(*this));
}
};
static_assert(shm_ok<Queue::MessageHeader>::value, "the whole point"
" is to stick it in shared memory");
// TODO(brians) maybe do this with atomic integer instructions so it doesn't
// have to lock/unlock pool_lock_
void Queue::DecrementMessageReferenceCount(const void *msg) {
MutexLocker locker(&pool_lock_);
MessageHeader *header = MessageHeader::Get(msg);
--header->ref_count;
assert(header->ref_count >= 0);
if (kRefDebug) {
printf("ref_dec_count: %p count=%d\n", msg, header->ref_count);
}
if (header->ref_count == 0) {
DoFreeMessage(msg);
}
}
Queue::Queue(const char *name, size_t length, int hash, int queue_length) {
const size_t name_size = strlen(name) + 1;
char *temp = static_cast<char *>(shm_malloc(name_size));
memcpy(temp, name, name_size);
name_ = temp;
length_ = length;
hash_ = hash;
queue_length_ = queue_length;
next_ = NULL;
recycle_ = NULL;
if (kFetchDebug) {
printf("initializing name=%s, length=%zd, hash=%d, queue_length=%d\n",
name, length, hash, queue_length);
}
data_length_ = queue_length + 1;
if (data_length_ < 2) { // TODO(brians) when could this happen?
data_length_ = 2;
}
data_ = static_cast<void **>(shm_malloc(sizeof(void *) * data_length_));
data_start_ = 0;
data_end_ = 0;
messages_ = 0;
mem_length_ = queue_length + kExtraMessages;
pool_length_ = 0;
messages_used_ = 0;
msg_length_ = length + sizeof(MessageHeader);
pool_ = static_cast<MessageHeader **>(
shm_malloc(sizeof(MessageHeader *) * mem_length_));
if (kFetchDebug) {
printf("made queue %s\n", name);
}
}
Queue *Queue::Fetch(const char *name, size_t length, int hash,
int queue_length) {
if (kFetchDebug) {
printf("fetching queue %s\n", name);
}
if (mutex_lock(&global_core->mem_struct->queues.alloc_lock) != 0) {
return NULL;
}
Queue *current = static_cast<Queue *>(
global_core->mem_struct->queues.queue_list);
Queue *last = NULL;
while (current != NULL) {
// if we found a matching queue
if (strcmp(current->name_, name) == 0 && current->length_ == length &&
current->hash_ == hash && current->queue_length_ == queue_length) {
mutex_unlock(&global_core->mem_struct->queues.alloc_lock);
return current;
} else {
if (kFetchDebug) {
printf("rejected queue %s strcmp=%d target=%s\n", current->name_,
strcmp(current->name_, name), name);
}
}
current = current->next_;
}
void *temp = shm_malloc(sizeof(Queue));
current = new (temp) Queue(name, length, hash, queue_length);
if (last == NULL) { // if we don't have one to tack the new one on to
global_core->mem_struct->queues.queue_list = current;
} else {
last->next_ = current;
}
mutex_unlock(&global_core->mem_struct->queues.alloc_lock);
return current;
}
Queue *Queue::Fetch(const char *name, size_t length, int hash,
int queue_length,
int recycle_hash, int recycle_length, Queue **recycle) {
Queue *r = Fetch(name, length, hash, queue_length);
r->recycle_ = Fetch(name, length, recycle_hash, recycle_length);
if (r == r->recycle_) {
fprintf(stderr, "queue: r->recycle_(=%p) == r(=%p)\n", r->recycle_, r);
printf("see stderr\n");
abort();
}
*recycle = r->recycle_;
return r;
}
void Queue::DoFreeMessage(const void *msg) {
MessageHeader *header = MessageHeader::Get(msg);
if (pool_[header->index] != header) { // if something's messed up
fprintf(stderr, "queue: something is very very wrong with queue %p."
" pool_(=%p)[header->index(=%d)] != header(=%p)\n",
this, pool_, header->index, header);
printf("queue: see stderr\n");
abort();
}
if (kRefDebug) {
printf("ref free: %p\n", msg);
}
--messages_used_;
if (recycle_ != NULL) {
void *const new_msg = recycle_->GetMessage();
if (new_msg == NULL) {
fprintf(stderr, "queue: couldn't get a message"
" for recycle queue %p\n", recycle_);
} else {
// Take a message from recycle_ and switch its
// header with the one being freed, which effectively
// switches which queue each message belongs to.
MessageHeader *const new_header = MessageHeader::Get(new_msg);
// also switch the messages between the pools
pool_[header->index] = new_header;
{
MutexLocker locker(&recycle_->pool_lock_);
recycle_->pool_[new_header->index] = header;
// swap the information in both headers
header->Swap(new_header);
// don't unlock the other pool until all of its messages are valid
}
// use the header for new_msg which is now for this pool
header = new_header;
if (!recycle_->WriteMessage(const_cast<void *>(msg), kOverride)) {
fprintf(stderr, "queue: %p->WriteMessage(%p, kOverride) failed."
" aborting\n", recycle_, msg);
printf("see stderr\n");
abort();
}
msg = new_msg;
}
}
// where the one we're freeing was
int index = header->index;
header->index = -1;
if (index != messages_used_) { // if we're not freeing the one on the end
// put the last one where the one we're freeing was
header = pool_[index] = pool_[messages_used_];
// put the one we're freeing at the end
pool_[messages_used_] = MessageHeader::Get(msg);
// update the former last one's index
header->index = index;
}
}
bool Queue::WriteMessage(void *msg, int options) {
if (kWriteDebug) {
printf("queue: %p->WriteMessage(%p, %d)\n", this, msg, options);
}
if (msg == NULL || msg < reinterpret_cast<void *>(global_core->mem_struct) ||
msg > static_cast<void *>((
reinterpret_cast<uintptr_t>(global_core->mem_struct) +
global_core->size))) {
fprintf(stderr, "queue: attempt to write bad message %p to %p. aborting\n",
msg, this);
printf("see stderr\n");
abort();
}
{
MutexLocker locker(&data_lock_);
int new_end = (data_end_ + 1) % data_length_;
while (new_end == data_start_) {
if (options & kNonBlock) {
if (kWriteDebug) {
printf("queue: not blocking on %p. returning -1\n", this);
}
return false;
} else if (options & kOverride) {
if (kWriteDebug) {
printf("queue: overriding on %p\n", this);
}
// avoid leaking the message that we're going to overwrite
DecrementMessageReferenceCount(data_[data_start_]);
data_start_ = (data_start_ + 1) % data_length_;
} else { // kBlock
if (kWriteDebug) {
printf("queue: going to wait for writable_ of %p\n", this);
}
writable_.Wait(&data_lock_);
}
new_end = (data_end_ + 1) % data_length_;
}
data_[data_end_] = msg;
++messages_;
data_end_ = new_end;
}
if (kWriteDebug) {
printf("queue: setting readable of %p\n", this);
}
readable_.Signal();
if (kWriteDebug) {
printf("queue: write returning true on queue %p\n", this);
}
return true;
}
void Queue::ReadCommonEnd(bool read) {
if (read) {
writable_.Signal();
}
}
bool Queue::ReadCommonStart(int options, int *index) {
while (data_start_ == data_end_ || ((index != NULL) && messages_ <= *index)) {
if (options & kNonBlock) {
if (kReadDebug) {
printf("queue: not going to block waiting on %p\n", this);
}
return false;
} else { // kBlock
if (kReadDebug) {
printf("queue: going to wait for readable of %p\n", this);
}
data_lock_.Unlock();
// wait for a message to become readable
readable_.Wait();
if (kReadDebug) {
printf("queue: done waiting for readable of %p\n", this);
}
data_lock_.Lock();
}
}
if (kReadDebug) {
printf("queue: %p->read start=%d end=%d\n", this, data_start_, data_end_);
}
return true;
}
void *Queue::ReadPeek(int options, int start) {
void *ret;
if (options & kFromEnd) {
int pos = data_end_ - 1;
if (pos < 0) { // if it needs to wrap
pos = data_length_ - 1;
}
if (kReadDebug) {
printf("queue: reading from line %d: %d\n", __LINE__, pos);
}
ret = data_[pos];
} else {
if (kReadDebug) {
printf("queue: reading from line %d: %d\n", __LINE__, start);
}
ret = data_[start];
}
MessageHeader *const header = MessageHeader::Get(ret);
++header->ref_count;
if (kRefDebug) {
printf("ref inc count: %p\n", ret);
}
return ret;
}
const void *Queue::ReadMessage(int options) {
if (kReadDebug) {
printf("queue: %p->ReadMessage(%d)\n", this, options);
}
void *msg = NULL;
MutexLocker locker(&data_lock_);
if (!ReadCommonStart(options, NULL)) {
if (kReadDebug) {
printf("queue: common returned false for %p\n", this);
}
return NULL;
}
if (options & kPeek) {
msg = ReadPeek(options, data_start_);
} else {
if (options & kFromEnd) {
while (1) {
if (kReadDebug) {
printf("queue: start of c2 of %p\n", this);
}
// This loop pulls each message out of the buffer.
const int pos = data_start_;
data_start_ = (data_start_ + 1) % data_length_;
// if this is the last one
if (data_start_ == data_end_) {
if (kReadDebug) {
printf("queue: reading from c2: %d\n", pos);
}
msg = data_[pos];
break;
}
// it's not going to be in the queue any more
DecrementMessageReferenceCount(data_[pos]);
}
} else {
if (kReadDebug) {
printf("queue: reading from d2: %d\n", data_start_);
}
msg = data_[data_start_];
data_start_ = (data_start_ + 1) % data_length_;
}
}
ReadCommonEnd(!(options & kPeek));
if (kReadDebug) {
printf("queue: read returning %p\n", msg);
}
return msg;
}
const void *Queue::ReadMessageIndex(int options, int *index) {
if (kReadDebug) {
printf("queue: %p->ReadMessageIndex(%d, %p(*=%d))\n",
this, options, index, *index);
}
void *msg = NULL;
{
MutexLocker locker(&data_lock_);
if (!ReadCommonStart(options, index)) {
if (kReadDebug) {
printf("queue: common returned false for %p\n", this);
}
return NULL;
}
// TODO(parker): Handle integer wrap on the index.
const int offset = messages_ - *index;
int my_start = data_end_ - offset;
if (offset >= data_length_) { // if we're behind the available messages
// catch index up to the last available message
*index += data_start_ - my_start;
// and that's the one we're going to read
my_start = data_start_;
}
if (my_start < 0) { // if we want to read off the end of the buffer
// unwrap where we're going to read from
my_start += data_length_;
}
if (options & kPeek) {
msg = ReadPeek(options, my_start);
} else {
if (options & kFromEnd) {
if (kReadDebug) {
printf("queue: start of c1 of %p\n", this);
}
int pos = data_end_ - 1;
if (pos < 0) { // if it wrapped
pos = data_length_ - 1; // unwrap it
}
if (kReadDebug) {
printf("queue: reading from c1: %d\n", pos);
}
msg = data_[pos];
*index = messages_;
} else {
if (kReadDebug) {
printf("queue: reading from d1: %d\n", my_start);
}
msg = data_[my_start];
++(*index);
}
MessageHeader *const header = MessageHeader::Get(msg);
++header->ref_count;
if (kRefDebug) {
printf("ref_inc_count: %p\n", msg);
}
}
}
// this function never consumes one off the queue
ReadCommonEnd(false);
return msg;
}
void *Queue::GetMessage() {
MutexLocker locker(&pool_lock_);
MessageHeader *header;
if (pool_length_ - messages_used_ > 0) {
header = pool_[messages_used_];
} else {
if (pool_length_ >= mem_length_) {
LOG(FATAL, "overused pool %p from queue %p\n", pool, queue);
}
header = pool_[pool_length_] =
static_cast<MessageHeader *>(shm_malloc(msg_length_));
++pool_length_;
}
void *msg = reinterpret_cast<uint8_t *>(header) + sizeof(MessageHeader);
header->ref_count = 1;
if (kRefDebug) {
printf("ref alloc: %p\n", msg);
}
header->index = messages_used_;
++messages_used_;
return msg;
}
} // namespace aos