blob: 56ca6b059bb85277338d93582e06844ed7ccbd48 [file] [log] [blame]
#include "y2014/control_loops/claw/claw.h"
#include <algorithm>
#include "aos/logging/logging.h"
#include "aos/commonmath.h"
#include "y2014/constants.h"
#include "y2014/control_loops/claw/claw_motor_plant.h"
// Zeroing plan.
// There are 2 types of zeros. Enabled and disabled ones.
// Disabled ones are only valid during auto mode, and can be used to speed up
// the enabled zero process. We need to re-zero during teleop in case the auto
// zero was poor and causes us to miss all our shots.
//
// We need to be able to zero manually while disabled by moving the joint over
// the zeros.
// Zero on the down edge when disabled (gravity in the direction of motion)
//
// When enabled, zero on the up edge (gravity opposing the direction of motion)
// The enabled sequence needs to work as follows. We can crash the claw if we
// bring them too close to each other or too far from each other. The only safe
// thing to do is to move them in unison.
//
// Start by moving them both towards the front of the bot to either find either
// the middle hall effect on either jaw, or the front hall effect on the bottom
// jaw. Any edge that isn't the desired edge will provide an approximate edge
// location that can be used for the fine tuning step.
// Once an edge is found on the front claw, move back the other way with both
// claws until an edge is found for the other claw.
// Now that we have an approximate zero, we can robustify the limits to keep
// both claws safe. Then, we can move both claws to a position that is the
// correct side of the zero and go zero.
// Valid region plan.
// Difference between the arms has a range, and the values of each arm has a
// range.
// If a claw runs up against a static limit, don't let the goal change outside
// the limit.
// If a claw runs up against a movable limit, move both claws outwards to get
// out of the condition.
namespace y2014 {
namespace control_loops {
namespace claw {
using ::frc971::HallEffectTracker;
using ::y2014::control_loops::claw::kDt;
using ::frc971::control_loops::DoCoerceGoal;
static const double kZeroingVoltage = 4.0;
static const double kMaxVoltage = 12.0;
const double kRezeroThreshold = 0.07;
ClawLimitedLoop::ClawLimitedLoop(StateFeedbackLoop<4, 2, 2> &&loop)
: StateFeedbackLoop<4, 2, 2>(::std::move(loop)),
uncapped_average_voltage_(0.0),
is_zeroing_(true),
U_Poly_((Eigen::Matrix<double, 4, 2>() << 1, 0,
-1, 0,
0, 1,
0, -1).finished(),
(Eigen::Matrix<double, 4, 1>() << kMaxVoltage, kMaxVoltage,
kMaxVoltage, kMaxVoltage).finished()),
U_Poly_zeroing_((Eigen::Matrix<double, 4, 2>() << 1, 0,
-1, 0,
0, 1,
0, -1).finished(),
(Eigen::Matrix<double, 4, 1>() <<
kZeroingVoltage, kZeroingVoltage,
kZeroingVoltage, kZeroingVoltage).finished()) {
::aos::controls::HPolytope<0>::Init();
}
// Caps the voltage prioritizing reducing velocity error over reducing
// positional error.
// Uses the polytope libararies which we used to just use for the drivetrain.
// Uses a region representing the maximum voltage and then transforms it such
// that the points represent different amounts of positional error and
// constrains the region such that, if at all possible, it will maintain its
// current efforts to reduce velocity error.
void ClawLimitedLoop::CapU() {
const Eigen::Matrix<double, 4, 1> error = R() - X_hat();
double u_top = U(1, 0);
double u_bottom = U(0, 0);
uncapped_average_voltage_ = (u_top + u_bottom) / 2;
double max_voltage = is_zeroing_ ? kZeroingVoltage : kMaxVoltage;
if (::std::abs(u_bottom) > max_voltage || ::std::abs(u_top) > max_voltage) {
VLOG(1) << "U at start " << U();
// H * U <= k
// U = UPos + UVel
// H * (UPos + UVel) <= k
// H * UPos <= k - H * UVel
// Now, we can do a coordinate transformation and say the following.
// UPos = position_K * position_error
// (H * position_K) * position_error <= k - H * UVel
Eigen::Matrix<double, 2, 2> position_K;
position_K << controller().K(0, 0), controller().K(0, 1),
controller().K(1, 0), controller().K(1, 1);
Eigen::Matrix<double, 2, 2> velocity_K;
velocity_K << controller().K(0, 2), controller().K(0, 3),
controller().K(1, 2), controller().K(1, 3);
Eigen::Matrix<double, 2, 1> position_error;
position_error << error(0, 0), error(1, 0);
Eigen::Matrix<double, 2, 1> velocity_error;
velocity_error << error(2, 0), error(3, 0);
VLOG(1) << "error " << error;
const auto &poly = is_zeroing_ ? U_Poly_zeroing_ : U_Poly_;
const Eigen::Matrix<double, 4, 2> pos_poly_H = poly.H() * position_K;
const Eigen::Matrix<double, 4, 1> pos_poly_k =
poly.k() - poly.H() * velocity_K * velocity_error;
const ::aos::controls::HPolytope<2> pos_poly(pos_poly_H, pos_poly_k);
const ::aos::controls::HVPolytope<2, 4, 4> hv_pos_poly(
pos_poly_H, pos_poly_k, pos_poly.Vertices());
Eigen::Matrix<double, 2, 1> adjusted_pos_error;
{
const auto &P = position_error;
// This line was at 45 degrees but is now at some angle steeper than the
// straight one between the points.
Eigen::Matrix<double, 1, 2> angle_45;
// If the top claw is above its soft upper limit, make the line actually
// 45 degrees to avoid smashing it into the limit in an attempt to fix the
// separation error faster than the bottom position one.
if (X_hat(0, 0) + X_hat(1, 0) >
constants::GetValues().claw.upper_claw.upper_limit) {
angle_45 << 1, 1;
} else {
// Fixing separation error half as fast as positional error works well
// because it means they both close evenly.
angle_45 << ::std::sqrt(3), 1;
}
Eigen::Matrix<double, 1, 2> L45_quadrant;
L45_quadrant << ::aos::sign(P(1, 0)), -::aos::sign(P(0, 0));
const auto L45 = L45_quadrant.cwiseProduct(angle_45);
const double w45 = 0;
Eigen::Matrix<double, 1, 2> LH;
if (::std::abs(P(0, 0)) > ::std::abs(P(1, 0))) {
LH << 0, 1;
} else {
LH << 1, 0;
}
const double wh = LH.dot(P);
Eigen::Matrix<double, 2, 2> standard;
standard << L45, LH;
Eigen::Matrix<double, 2, 1> W;
W << w45, wh;
const Eigen::Matrix<double, 2, 1> intersection = standard.inverse() * W;
bool is_inside_h;
const auto adjusted_pos_error_h = DoCoerceGoal<double>(
hv_pos_poly, LH, wh, position_error, &is_inside_h);
const auto adjusted_pos_error_45 =
DoCoerceGoal<double>(hv_pos_poly, L45, w45, intersection, nullptr);
if (pos_poly.IsInside(intersection)) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
if (is_inside_h) {
if (adjusted_pos_error_h.norm() > adjusted_pos_error_45.norm()) {
adjusted_pos_error = adjusted_pos_error_h;
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
} else {
adjusted_pos_error = adjusted_pos_error_45;
}
}
}
VLOG(1) << "adjusted_pos_error " << adjusted_pos_error;
mutable_U() = velocity_K * velocity_error + position_K * adjusted_pos_error;
VLOG(1) << "U is now" << U();
{
const auto values = constants::GetValues().claw;
if (top_known_) {
if (X_hat(0, 0) + X_hat(1, 0) > values.upper_claw.upper_limit && U(1, 0) > 0) {
AOS_LOG(WARNING, "upper claw too high and moving up\n");
mutable_U(1, 0) = 0;
} else if (X_hat(0, 0) + X_hat(1, 0) < values.upper_claw.lower_limit &&
U(1, 0) < 0) {
AOS_LOG(WARNING, "upper claw too low and moving down\n");
mutable_U(1, 0) = 0;
}
}
if (bottom_known_) {
if (X_hat(0, 0) > values.lower_claw.upper_limit && U(0, 0) > 0) {
AOS_LOG(WARNING, "lower claw too high and moving up\n");
mutable_U(0, 0) = 0;
} else if (X_hat(0, 0) < values.lower_claw.lower_limit && U(0, 0) < 0) {
AOS_LOG(WARNING, "lower claw too low and moving down\n");
mutable_U(0, 0) = 0;
}
}
}
}
}
ZeroedStateFeedbackLoop::ZeroedStateFeedbackLoop(const char *name,
ClawMotor *motor)
: offset_(0.0),
name_(name),
motor_(motor),
zeroing_state_(UNKNOWN_POSITION),
encoder_(0.0),
last_encoder_(0.0) {}
void ZeroedStateFeedbackLoop::SetPositionValues(const HalfClawPosition *claw) {
front_.Update(claw->front());
calibration_.Update(claw->calibration());
back_.Update(claw->back());
bool any_sensor_triggered = any_triggered();
if (any_sensor_triggered && any_triggered_last_) {
// We are still on the hall effect and nothing has changed.
min_hall_effect_on_angle_ =
::std::min(min_hall_effect_on_angle_, claw->position());
max_hall_effect_on_angle_ =
::std::max(max_hall_effect_on_angle_, claw->position());
} else if (!any_sensor_triggered && !any_triggered_last_) {
// We are still off the hall effect and nothing has changed.
min_hall_effect_off_angle_ =
::std::min(min_hall_effect_off_angle_, claw->position());
max_hall_effect_off_angle_ =
::std::max(max_hall_effect_off_angle_, claw->position());
}
if (front_.is_posedge()) {
// Saw a posedge on the hall effect. Reset the limits.
min_hall_effect_on_angle_ =
::std::min(claw->front()->posedge_value(), claw->position());
max_hall_effect_on_angle_ =
::std::max(claw->front()->posedge_value(), claw->position());
}
if (calibration_.is_posedge()) {
// Saw a posedge on the hall effect. Reset the limits.
min_hall_effect_on_angle_ =
::std::min(claw->calibration()->posedge_value(), claw->position());
max_hall_effect_on_angle_ =
::std::max(claw->calibration()->posedge_value(), claw->position());
}
if (back_.is_posedge()) {
// Saw a posedge on the hall effect. Reset the limits.
min_hall_effect_on_angle_ =
::std::min(claw->back()->posedge_value(), claw->position());
max_hall_effect_on_angle_ =
::std::max(claw->back()->posedge_value(), claw->position());
}
if (front_.is_negedge()) {
// Saw a negedge on the hall effect. Reset the limits.
min_hall_effect_off_angle_ =
::std::min(claw->front()->negedge_value(), claw->position());
max_hall_effect_off_angle_ =
::std::max(claw->front()->negedge_value(), claw->position());
}
if (calibration_.is_negedge()) {
// Saw a negedge on the hall effect. Reset the limits.
min_hall_effect_off_angle_ =
::std::min(claw->calibration()->negedge_value(), claw->position());
max_hall_effect_off_angle_ =
::std::max(claw->calibration()->negedge_value(), claw->position());
}
if (back_.is_negedge()) {
// Saw a negedge on the hall effect. Reset the limits.
min_hall_effect_off_angle_ =
::std::min(claw->back()->negedge_value(), claw->position());
max_hall_effect_off_angle_ =
::std::max(claw->back()->negedge_value(), claw->position());
}
last_encoder_ = encoder_;
if (front().value() || calibration().value() || back().value()) {
last_on_encoder_ = encoder_;
} else {
last_off_encoder_ = encoder_;
}
encoder_ = claw->position();
any_triggered_last_ = any_sensor_triggered;
}
void ZeroedStateFeedbackLoop::Reset(const HalfClawPosition *claw) {
set_zeroing_state(ZeroedStateFeedbackLoop::UNKNOWN_POSITION);
front_.Reset(claw->front());
calibration_.Reset(claw->calibration());
back_.Reset(claw->back());
// close up the min and max edge positions as they are no longer valid and
// will be expanded in future iterations
min_hall_effect_on_angle_ = claw->position();
max_hall_effect_on_angle_ = claw->position();
min_hall_effect_off_angle_ = claw->position();
max_hall_effect_off_angle_ = claw->position();
any_triggered_last_ = any_triggered();
}
bool TopZeroedStateFeedbackLoop::SetCalibrationOnEdge(
const constants::Values::Claws::Claw &claw_values,
JointZeroingState zeroing_state) {
double edge_encoder;
double edge_angle;
if (GetPositionOfEdge(claw_values, &edge_encoder, &edge_angle)) {
AOS_LOG(INFO, "Calibration edge edge should be %f.\n", edge_angle);
SetCalibration(edge_encoder, edge_angle);
set_zeroing_state(zeroing_state);
return true;
}
return false;
}
void TopZeroedStateFeedbackLoop::HandleCalibrationError(
const constants::Values::Claws::Claw &claw_values) {
double edge_encoder;
double edge_angle;
if (GetPositionOfEdge(claw_values, &edge_encoder, &edge_angle)) {
const double calibration_error =
ComputeCalibrationChange(edge_encoder, edge_angle);
AOS_LOG(INFO, "Top calibration error is %f\n", calibration_error);
if (::std::abs(calibration_error) > kRezeroThreshold) {
AOS_LOG(WARNING, "rezeroing top\n");
SetCalibration(edge_encoder, edge_angle);
set_zeroing_state(ZeroedStateFeedbackLoop::UNKNOWN_POSITION);
}
}
}
void BottomZeroedStateFeedbackLoop::HandleCalibrationError(
const constants::Values::Claws::Claw &claw_values) {
double edge_encoder;
double edge_angle;
if (GetPositionOfEdge(claw_values, &edge_encoder, &edge_angle)) {
const double calibration_error =
ComputeCalibrationChange(edge_encoder, edge_angle);
AOS_LOG(INFO, "Bottom calibration error is %f\n", calibration_error);
if (::std::abs(calibration_error) > kRezeroThreshold) {
AOS_LOG(WARNING, "rezeroing bottom\n");
SetCalibration(edge_encoder, edge_angle);
set_zeroing_state(ZeroedStateFeedbackLoop::UNKNOWN_POSITION);
}
}
}
bool BottomZeroedStateFeedbackLoop::SetCalibrationOnEdge(
const constants::Values::Claws::Claw &claw_values,
JointZeroingState zeroing_state) {
double edge_encoder;
double edge_angle;
if (GetPositionOfEdge(claw_values, &edge_encoder, &edge_angle)) {
AOS_LOG(INFO, "Calibration edge.\n");
SetCalibration(edge_encoder, edge_angle);
set_zeroing_state(zeroing_state);
return true;
}
return false;
}
ClawMotor::ClawMotor(::aos::EventLoop *event_loop, const ::std::string &name)
: aos::controls::ControlLoop<Goal, Position, Status, Output>(event_loop,
name),
has_top_claw_goal_(false),
top_claw_goal_(0.0),
top_claw_(this),
has_bottom_claw_goal_(false),
bottom_claw_goal_(0.0),
bottom_claw_(this),
claw_(::y2014::control_loops::claw::MakeClawLoop()),
was_enabled_(false),
doing_calibration_fine_tune_(false),
capped_goal_(false),
mode_(UNKNOWN_LOCATION) {}
const int ZeroedStateFeedbackLoop::kZeroingMaxVoltage;
bool ZeroedStateFeedbackLoop::SawFilteredPosedge(
const HallEffectTracker &this_sensor, const HallEffectTracker &sensorA,
const HallEffectTracker &sensorB) {
if (posedge_filter_ == nullptr && this_sensor.posedge_count_changed() &&
!sensorA.posedge_count_changed() && !sensorB.posedge_count_changed() &&
this_sensor.value() && !this_sensor.last_value()) {
posedge_filter_ = &this_sensor;
} else if (posedge_filter_ == &this_sensor &&
!this_sensor.posedge_count_changed() &&
!sensorA.posedge_count_changed() &&
!sensorB.posedge_count_changed() && this_sensor.value()) {
posedge_filter_ = nullptr;
return true;
} else if (posedge_filter_ == &this_sensor) {
posedge_filter_ = nullptr;
}
return false;
}
bool ZeroedStateFeedbackLoop::SawFilteredNegedge(
const HallEffectTracker &this_sensor, const HallEffectTracker &sensorA,
const HallEffectTracker &sensorB) {
if (negedge_filter_ == nullptr && this_sensor.negedge_count_changed() &&
!sensorA.negedge_count_changed() && !sensorB.negedge_count_changed() &&
!this_sensor.value() && this_sensor.last_value()) {
negedge_filter_ = &this_sensor;
} else if (negedge_filter_ == &this_sensor &&
!this_sensor.negedge_count_changed() &&
!sensorA.negedge_count_changed() &&
!sensorB.negedge_count_changed() && !this_sensor.value()) {
negedge_filter_ = nullptr;
return true;
} else if (negedge_filter_ == &this_sensor) {
negedge_filter_ = nullptr;
}
return false;
}
bool ZeroedStateFeedbackLoop::DoGetPositionOfEdge(
const constants::Values::Claws::AnglePair &angles, double *edge_encoder,
double *edge_angle, const HallEffectTracker &this_sensor,
const HallEffectTracker &sensorA, const HallEffectTracker &sensorB,
const char *hall_effect_name) {
bool found_edge = false;
if (SawFilteredPosedge(this_sensor, sensorA, sensorB)) {
if (min_hall_effect_off_angle_ == max_hall_effect_off_angle_) {
AOS_LOG(WARNING, "%s: Uncertain which side, rejecting posedge\n", name_);
} else {
const double average_last_encoder =
(min_hall_effect_off_angle_ + max_hall_effect_off_angle_) / 2.0;
if (this_sensor.posedge_value() < average_last_encoder) {
*edge_angle = angles.upper_decreasing_angle;
AOS_LOG(INFO,
"%s Posedge upper of %s -> %f posedge: %f avg_encoder: %f\n",
name_, hall_effect_name, *edge_angle,
this_sensor.posedge_value(), average_last_encoder);
} else {
*edge_angle = angles.lower_angle;
AOS_LOG(INFO,
"%s Posedge lower of %s -> %f posedge: %f avg_encoder: %f\n",
name_, hall_effect_name, *edge_angle,
this_sensor.posedge_value(), average_last_encoder);
}
*edge_encoder = this_sensor.posedge_value();
found_edge = true;
}
}
if (SawFilteredNegedge(this_sensor, sensorA, sensorB)) {
if (min_hall_effect_on_angle_ == max_hall_effect_on_angle_) {
AOS_LOG(WARNING, "%s: Uncertain which side, rejecting negedge\n", name_);
} else {
const double average_last_encoder =
(min_hall_effect_on_angle_ + max_hall_effect_on_angle_) / 2.0;
if (this_sensor.negedge_value() > average_last_encoder) {
*edge_angle = angles.upper_angle;
AOS_LOG(INFO,
"%s Negedge upper of %s -> %f negedge: %f avg_encoder: %f\n",
name_, hall_effect_name, *edge_angle,
this_sensor.negedge_value(), average_last_encoder);
} else {
*edge_angle = angles.lower_decreasing_angle;
AOS_LOG(INFO,
"%s Negedge lower of %s -> %f negedge: %f avg_encoder: %f\n",
name_, hall_effect_name, *edge_angle,
this_sensor.negedge_value(), average_last_encoder);
}
*edge_encoder = this_sensor.negedge_value();
found_edge = true;
}
}
return found_edge;
}
bool ZeroedStateFeedbackLoop::GetPositionOfEdge(
const constants::Values::Claws::Claw &claw_values, double *edge_encoder,
double *edge_angle) {
if (DoGetPositionOfEdge(claw_values.front, edge_encoder, edge_angle, front_,
calibration_, back_, "front")) {
return true;
}
if (DoGetPositionOfEdge(claw_values.calibration, edge_encoder, edge_angle,
calibration_, front_, back_, "calibration")) {
return true;
}
if (DoGetPositionOfEdge(claw_values.back, edge_encoder, edge_angle, back_,
calibration_, front_, "back")) {
return true;
}
return false;
}
void TopZeroedStateFeedbackLoop::SetCalibration(double edge_encoder,
double edge_angle) {
double old_offset = offset_;
offset_ = edge_angle - edge_encoder;
const double doffset = offset_ - old_offset;
motor_->ChangeTopOffset(doffset);
}
double TopZeroedStateFeedbackLoop::ComputeCalibrationChange(double edge_encoder,
double edge_angle) {
const double offset = edge_angle - edge_encoder;
const double doffset = offset - offset_;
return doffset;
}
void BottomZeroedStateFeedbackLoop::SetCalibration(double edge_encoder,
double edge_angle) {
double old_offset = offset_;
offset_ = edge_angle - edge_encoder;
const double doffset = offset_ - old_offset;
motor_->ChangeBottomOffset(doffset);
}
double BottomZeroedStateFeedbackLoop::ComputeCalibrationChange(
double edge_encoder, double edge_angle) {
const double offset = edge_angle - edge_encoder;
const double doffset = offset - offset_;
return doffset;
}
void ClawMotor::ChangeTopOffset(double doffset) {
claw_.ChangeTopOffset(doffset);
if (has_top_claw_goal_) {
top_claw_goal_ += doffset;
}
}
void ClawMotor::ChangeBottomOffset(double doffset) {
claw_.ChangeBottomOffset(doffset);
if (has_bottom_claw_goal_) {
bottom_claw_goal_ += doffset;
}
}
void ClawLimitedLoop::ChangeTopOffset(double doffset) {
mutable_X_hat()(1, 0) += doffset;
AOS_LOG(INFO, "Changing top offset by %f\n", doffset);
}
void ClawLimitedLoop::ChangeBottomOffset(double doffset) {
mutable_X_hat()(0, 0) += doffset;
mutable_X_hat()(1, 0) -= doffset;
AOS_LOG(INFO, "Changing bottom offset by %f\n", doffset);
}
void LimitClawGoal(double *bottom_goal, double *top_goal,
const constants::Values &values) {
// first update position based on angle limit
const double separation = *top_goal - *bottom_goal;
if (separation > values.claw.soft_max_separation) {
const double dsep = (separation - values.claw.soft_max_separation) / 2.0;
*bottom_goal += dsep;
*top_goal -= dsep;
}
if (separation < values.claw.soft_min_separation) {
const double dsep = (separation - values.claw.soft_min_separation) / 2.0;
*bottom_goal += dsep;
*top_goal -= dsep;
}
// now move both goals in unison
if (*bottom_goal < values.claw.lower_claw.lower_limit) {
*top_goal += values.claw.lower_claw.lower_limit - *bottom_goal;
*bottom_goal = values.claw.lower_claw.lower_limit;
}
if (*bottom_goal > values.claw.lower_claw.upper_limit) {
*top_goal -= *bottom_goal - values.claw.lower_claw.upper_limit;
*bottom_goal = values.claw.lower_claw.upper_limit;
}
if (*top_goal < values.claw.upper_claw.lower_limit) {
*bottom_goal += values.claw.upper_claw.lower_limit - *top_goal;
*top_goal = values.claw.upper_claw.lower_limit;
}
if (*top_goal > values.claw.upper_claw.upper_limit) {
*bottom_goal -= *top_goal - values.claw.upper_claw.upper_limit;
*top_goal = values.claw.upper_claw.upper_limit;
}
}
bool ClawMotor::is_ready() const {
return (
(top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED &&
bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED) ||
((has_joystick_state() ? joystick_state().autonomous() : true) &&
((top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
top_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION) &&
(bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
bottom_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION))));
}
bool ClawMotor::is_zeroing() const { return !is_ready(); }
// Positive angle is up, and positive power is up.
void ClawMotor::RunIteration(const Goal *goal, const Position *position,
aos::Sender<Output>::Builder *output,
aos::Sender<Status>::Builder *status) {
// Disable the motors now so that all early returns will return with the
// motors disabled.
OutputT output_struct;
if (output) {
output_struct.top_claw_voltage = 0;
output_struct.bottom_claw_voltage = 0;
output_struct.intake_voltage = 0;
output_struct.tusk_voltage = 0;
}
StatusT status_struct;
if (goal) {
if (::std::isnan(goal->bottom_angle()) ||
::std::isnan(goal->separation_angle()) ||
::std::isnan(goal->intake()) || ::std::isnan(goal->centering())) {
status->Send(Status::Pack(*status->fbb(), &status_struct));
output->Send(Output::Pack(*output->fbb(), &output_struct));
return;
}
}
if (WasReset()) {
top_claw_.Reset(position->top());
bottom_claw_.Reset(position->bottom());
}
const constants::Values &values = constants::GetValues();
if (position) {
Eigen::Matrix<double, 2, 1> Y;
Y << position->bottom()->position() + bottom_claw_.offset(),
position->top()->position() + top_claw_.offset();
claw_.Correct(Y);
top_claw_.SetPositionValues(position->top());
bottom_claw_.SetPositionValues(position->bottom());
if (!has_top_claw_goal_) {
has_top_claw_goal_ = true;
top_claw_goal_ = top_claw_.absolute_position();
initial_separation_ =
top_claw_.absolute_position() - bottom_claw_.absolute_position();
}
if (!has_bottom_claw_goal_) {
has_bottom_claw_goal_ = true;
bottom_claw_goal_ = bottom_claw_.absolute_position();
initial_separation_ =
top_claw_.absolute_position() - bottom_claw_.absolute_position();
}
}
bool autonomous, enabled;
if (has_joystick_state()) {
autonomous = joystick_state().autonomous();
enabled = joystick_state().enabled();
} else {
autonomous = true;
enabled = false;
}
double bottom_claw_velocity_ = 0.0;
double top_claw_velocity_ = 0.0;
if (goal != NULL &&
((top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED &&
bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED) ||
(autonomous &&
((top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
top_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION) &&
(bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
bottom_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION))))) {
// Ready to use the claw.
// Limit the goals here.
bottom_claw_goal_ = goal->bottom_angle();
top_claw_goal_ = goal->bottom_angle() + goal->separation_angle();
has_bottom_claw_goal_ = true;
has_top_claw_goal_ = true;
doing_calibration_fine_tune_ = false;
mode_ = READY;
bottom_claw_.HandleCalibrationError(values.claw.lower_claw);
top_claw_.HandleCalibrationError(values.claw.upper_claw);
} else if (top_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION &&
bottom_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION) {
// Time to fine tune the zero.
// Limit the goals here.
if (!enabled) {
// If we are disabled, start the fine tune process over again.
doing_calibration_fine_tune_ = false;
}
if (bottom_claw_.zeroing_state() != ZeroedStateFeedbackLoop::CALIBRATED) {
// always get the bottom claw to calibrated first
AOS_LOG(DEBUG, "Calibrating the bottom of the claw\n");
if (!doing_calibration_fine_tune_) {
if (::std::abs(bottom_absolute_position() -
values.claw.start_fine_tune_pos) <
values.claw.claw_unimportant_epsilon) {
doing_calibration_fine_tune_ = true;
bottom_claw_goal_ += values.claw.claw_zeroing_speed * kDt;
top_claw_velocity_ = bottom_claw_velocity_ =
values.claw.claw_zeroing_speed;
AOS_LOG(DEBUG, "Ready to fine tune the bottom\n");
mode_ = FINE_TUNE_BOTTOM;
} else {
// send bottom to zeroing start
bottom_claw_goal_ = values.claw.start_fine_tune_pos;
AOS_LOG(DEBUG, "Going to the start position for the bottom\n");
mode_ = PREP_FINE_TUNE_BOTTOM;
}
} else {
mode_ = FINE_TUNE_BOTTOM;
bottom_claw_goal_ += values.claw.claw_zeroing_speed * kDt;
top_claw_velocity_ = bottom_claw_velocity_ =
values.claw.claw_zeroing_speed;
if (top_claw_.front_or_back_triggered() ||
bottom_claw_.front_or_back_triggered()) {
// We shouldn't hit a limit, but if we do, go back to the zeroing
// point and try again.
doing_calibration_fine_tune_ = false;
bottom_claw_goal_ = values.claw.start_fine_tune_pos;
top_claw_velocity_ = bottom_claw_velocity_ = 0.0;
AOS_LOG(DEBUG, "Found a limit, starting over.\n");
mode_ = PREP_FINE_TUNE_BOTTOM;
}
if (position && bottom_claw_.SawFilteredPosedge(
bottom_claw_.calibration(), bottom_claw_.front(),
bottom_claw_.back())) {
// do calibration
bottom_claw_.SetCalibration(
position->bottom()->calibration()->posedge_value(),
values.claw.lower_claw.calibration.lower_angle);
bottom_claw_.set_zeroing_state(ZeroedStateFeedbackLoop::CALIBRATED);
// calibrated so we are done fine tuning bottom
doing_calibration_fine_tune_ = false;
AOS_LOG(DEBUG, "Calibrated the bottom correctly!\n");
} else if (bottom_claw_.calibration().last_value()) {
AOS_LOG(DEBUG,
"Aborting bottom fine tune because sensor triggered\n");
doing_calibration_fine_tune_ = false;
bottom_claw_.set_zeroing_state(
ZeroedStateFeedbackLoop::UNKNOWN_POSITION);
} else {
AOS_LOG(DEBUG, "Fine tuning\n");
}
}
// now set the top claw to track
top_claw_goal_ = bottom_claw_goal_ + values.claw.claw_zeroing_separation;
} else {
// bottom claw must be calibrated, start on the top
if (!doing_calibration_fine_tune_) {
if (::std::abs(top_absolute_position() -
values.claw.start_fine_tune_pos) <
values.claw.claw_unimportant_epsilon) {
doing_calibration_fine_tune_ = true;
top_claw_goal_ += values.claw.claw_zeroing_speed * kDt;
top_claw_velocity_ = bottom_claw_velocity_ =
values.claw.claw_zeroing_speed;
AOS_LOG(DEBUG, "Ready to fine tune the top\n");
mode_ = FINE_TUNE_TOP;
} else {
// send top to zeroing start
top_claw_goal_ = values.claw.start_fine_tune_pos;
AOS_LOG(DEBUG, "Going to the start position for the top\n");
mode_ = PREP_FINE_TUNE_TOP;
}
} else {
mode_ = FINE_TUNE_TOP;
top_claw_goal_ += values.claw.claw_zeroing_speed * kDt;
top_claw_velocity_ = bottom_claw_velocity_ =
values.claw.claw_zeroing_speed;
if (top_claw_.front_or_back_triggered() ||
bottom_claw_.front_or_back_triggered()) {
// this should not happen, but now we know it won't
doing_calibration_fine_tune_ = false;
top_claw_goal_ = values.claw.start_fine_tune_pos;
top_claw_velocity_ = bottom_claw_velocity_ = 0.0;
AOS_LOG(DEBUG, "Found a limit, starting over.\n");
mode_ = PREP_FINE_TUNE_TOP;
}
if (position &&
top_claw_.SawFilteredPosedge(top_claw_.calibration(),
top_claw_.front(), top_claw_.back())) {
// do calibration
top_claw_.SetCalibration(
position->top()->calibration()->posedge_value(),
values.claw.upper_claw.calibration.lower_angle);
top_claw_.set_zeroing_state(ZeroedStateFeedbackLoop::CALIBRATED);
// calibrated so we are done fine tuning top
doing_calibration_fine_tune_ = false;
AOS_LOG(DEBUG, "Calibrated the top correctly!\n");
} else if (top_claw_.calibration().last_value()) {
AOS_LOG(DEBUG, "Aborting top fine tune because sensor triggered\n");
doing_calibration_fine_tune_ = false;
top_claw_.set_zeroing_state(
ZeroedStateFeedbackLoop::UNKNOWN_POSITION);
}
}
// now set the bottom claw to track
bottom_claw_goal_ = top_claw_goal_ - values.claw.claw_zeroing_separation;
}
} else {
doing_calibration_fine_tune_ = false;
if (!was_enabled_ && enabled) {
if (position) {
top_claw_goal_ = position->top()->position() + top_claw_.offset();
bottom_claw_goal_ =
position->bottom()->position() + bottom_claw_.offset();
initial_separation_ =
position->top()->position() - position->bottom()->position();
} else {
has_top_claw_goal_ = false;
has_bottom_claw_goal_ = false;
}
}
if ((bottom_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION ||
bottom_claw_.front().value() || top_claw_.front().value()) &&
!top_claw_.back().value() && !bottom_claw_.back().value()) {
if (enabled) {
// Time to slowly move back up to find any position to narrow down the
// zero.
top_claw_goal_ += values.claw.claw_zeroing_off_speed * kDt;
bottom_claw_goal_ += values.claw.claw_zeroing_off_speed * kDt;
top_claw_velocity_ = bottom_claw_velocity_ =
values.claw.claw_zeroing_off_speed;
AOS_LOG(DEBUG, "Bottom is known.\n");
}
} else {
// We don't know where either claw is. Slowly start moving down to find
// any hall effect.
if (enabled) {
top_claw_goal_ -= values.claw.claw_zeroing_off_speed * kDt;
bottom_claw_goal_ -= values.claw.claw_zeroing_off_speed * kDt;
top_claw_velocity_ = bottom_claw_velocity_ =
-values.claw.claw_zeroing_off_speed;
AOS_LOG(DEBUG, "Both are unknown.\n");
}
}
if (position) {
if (enabled) {
top_claw_.SetCalibrationOnEdge(
values.claw.upper_claw,
ZeroedStateFeedbackLoop::APPROXIMATE_CALIBRATION);
bottom_claw_.SetCalibrationOnEdge(
values.claw.lower_claw,
ZeroedStateFeedbackLoop::APPROXIMATE_CALIBRATION);
} else {
// TODO(austin): Only calibrate on the predetermined edge.
// We might be able to just ignore this since the backlash is soooo
// low.
// :)
top_claw_.SetCalibrationOnEdge(
values.claw.upper_claw,
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION);
bottom_claw_.SetCalibrationOnEdge(
values.claw.lower_claw,
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION);
}
}
mode_ = UNKNOWN_LOCATION;
}
// Limit the goals if both claws have been (mostly) found.
if (mode_ != UNKNOWN_LOCATION) {
LimitClawGoal(&bottom_claw_goal_, &top_claw_goal_, values);
}
claw_.set_positions_known(
top_claw_.zeroing_state() != ZeroedStateFeedbackLoop::UNKNOWN_POSITION,
bottom_claw_.zeroing_state() !=
ZeroedStateFeedbackLoop::UNKNOWN_POSITION);
if (has_top_claw_goal_ && has_bottom_claw_goal_) {
claw_.mutable_R() << bottom_claw_goal_, top_claw_goal_ - bottom_claw_goal_,
bottom_claw_velocity_, top_claw_velocity_ - bottom_claw_velocity_;
// Only cap power when one of the halves of the claw is moving slowly and
// could wind up.
claw_.set_is_zeroing(mode_ == UNKNOWN_LOCATION || mode_ == FINE_TUNE_TOP ||
mode_ == FINE_TUNE_BOTTOM);
claw_.Update(output == nullptr);
} else {
claw_.Update(true);
}
capped_goal_ = false;
switch (mode_) {
case READY:
case PREP_FINE_TUNE_TOP:
case PREP_FINE_TUNE_BOTTOM:
break;
case FINE_TUNE_BOTTOM:
case FINE_TUNE_TOP:
case UNKNOWN_LOCATION: {
if (claw_.uncapped_average_voltage() > values.claw.max_zeroing_voltage) {
double dx_bot =
(claw_.U_uncapped(0, 0) - values.claw.max_zeroing_voltage) /
claw_.controller().K(0, 0);
double dx_top =
(claw_.U_uncapped(1, 0) - values.claw.max_zeroing_voltage) /
claw_.controller().K(0, 0);
double dx = ::std::max(dx_top, dx_bot);
bottom_claw_goal_ -= dx;
top_claw_goal_ -= dx;
Eigen::Matrix<double, 4, 1> R;
R << bottom_claw_goal_, top_claw_goal_ - bottom_claw_goal_, claw_.R(2, 0),
claw_.R(3, 0);
claw_.mutable_U() = claw_.controller().K() * (R - claw_.X_hat());
capped_goal_ = true;
AOS_LOG(DEBUG,
"Moving the goal by %f to prevent windup."
" Uncapped is %f, max is %f, difference is %f\n",
dx, claw_.uncapped_average_voltage(),
values.claw.max_zeroing_voltage,
(claw_.uncapped_average_voltage() -
values.claw.max_zeroing_voltage));
} else if (claw_.uncapped_average_voltage() <
-values.claw.max_zeroing_voltage) {
double dx_bot =
(claw_.U_uncapped(0, 0) + values.claw.max_zeroing_voltage) /
claw_.controller().K(0, 0);
double dx_top =
(claw_.U_uncapped(1, 0) + values.claw.max_zeroing_voltage) /
claw_.controller().K(0, 0);
double dx = ::std::min(dx_top, dx_bot);
bottom_claw_goal_ -= dx;
top_claw_goal_ -= dx;
Eigen::Matrix<double, 4, 1> R;
R << bottom_claw_goal_, top_claw_goal_ - bottom_claw_goal_, claw_.R(2, 0),
claw_.R(3, 0);
claw_.mutable_U() = claw_.controller().K() * (R - claw_.X_hat());
capped_goal_ = true;
AOS_LOG(DEBUG, "Moving the goal by %f to prevent windup\n", dx);
}
} break;
}
if (output) {
if (goal) {
//setup the intake
output_struct.intake_voltage =
(goal->intake() > 12.0)
? 12
: (goal->intake() < -12.0) ? -12.0 : goal->intake();
output_struct.tusk_voltage = goal->centering();
output_struct.tusk_voltage =
(goal->centering() > 12.0) ? 12 : (goal->centering() < -12.0)
? -12.0
: goal->centering();
}
output_struct.top_claw_voltage = claw_.U(1, 0);
output_struct.bottom_claw_voltage = claw_.U(0, 0);
if (output_struct.top_claw_voltage > kMaxVoltage) {
output_struct.top_claw_voltage = kMaxVoltage;
} else if (output_struct.top_claw_voltage < -kMaxVoltage) {
output_struct.top_claw_voltage = -kMaxVoltage;
}
if (output_struct.bottom_claw_voltage > kMaxVoltage) {
output_struct.bottom_claw_voltage = kMaxVoltage;
} else if (output_struct.bottom_claw_voltage < -kMaxVoltage) {
output_struct.bottom_claw_voltage = -kMaxVoltage;
}
output->Send(Output::Pack(*output->fbb(), &output_struct));
}
status_struct.bottom = bottom_absolute_position();
status_struct.separation =
top_absolute_position() - bottom_absolute_position();
status_struct.bottom_velocity = claw_.X_hat(2, 0);
status_struct.separation_velocity = claw_.X_hat(3, 0);
if (goal) {
bool bottom_done =
::std::abs(bottom_absolute_position() - goal->bottom_angle()) < 0.020;
bool bottom_velocity_done = ::std::abs(status_struct.bottom_velocity) < 0.2;
bool separation_done =
::std::abs((top_absolute_position() - bottom_absolute_position()) -
goal->separation_angle()) < 0.020;
bool separation_done_with_ball =
::std::abs((top_absolute_position() - bottom_absolute_position()) -
goal->separation_angle()) < 0.06;
status_struct.done =
is_ready() && separation_done && bottom_done && bottom_velocity_done;
status_struct.done_with_ball = is_ready() && separation_done_with_ball &&
bottom_done && bottom_velocity_done;
} else {
status_struct.done = status_struct.done_with_ball = false;
}
status_struct.zeroed = is_ready();
status_struct.zeroed_for_auto =
(top_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
top_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION) &&
(bottom_claw_.zeroing_state() == ZeroedStateFeedbackLoop::CALIBRATED ||
bottom_claw_.zeroing_state() ==
ZeroedStateFeedbackLoop::DISABLED_CALIBRATION);
status->Send(Status::Pack(*status->fbb(), &status_struct));
was_enabled_ = enabled;
}
} // namespace claw
} // namespace control_loops
} // namespace y2014